Summary

Stereolithographic 3D 印刷用可再生丙烯酸酯

Published: September 12, 2018
doi:

Summary

介绍了一种可再生光敏树脂在光固化成形装置上的添加剂制造协议。

Abstract

具有成本竞争性的可再生材料的可获得性及其在添加剂制造中的应用是有效生物基经济的关键。我们展示了可持续树脂的快速原型使用 stereolithographic 3D 打印机。树脂配方是通过直接混合生物基丙烯酸酯单体和寡聚物与 photoinitiatior 和光吸收器。树脂粘度受单体对低聚比的控制, 由平行板几何流变仪确定为剪切速率函数。用生物基树脂充电的 stereolithographic 装置, 用于生产复杂形状的原型, 精度高。该产品需要后处理, 包括酒精冲洗和紫外线照射, 以确保完全固化。通过扫描电镜, 揭示了原型的高特征分辨率和良好的表面整理。

Introduction

快速原型实现了按需生产和设计自由, 并允许以逐层方式有效地制造3D 结构1。因此, 3D 印刷作为一种制造技术, 近年来发展迅速,2。各种技术都是可用的, 都依赖于将虚拟模型转换为物理对象, 并应用挤压、直接能量沉积、粉末凝固、薄板层压和聚合等过程。后者涉及逐步 UV 固化液体光敏树脂。在 1986年, 赫尔和同事们开发了光固化成形设备 (SLA), 一种 UV 激光3D 打印机。最近, 一个类似的过程称为数字光处理 (DLP) 已经成为可用, 其中聚合是由一个轻型投影机启动。DLP 和 SLA 一起称为光固化成形3D 打印3

SLA 应用于高分辨率的生物医学器件的原型制作和制造4,5。该技术在精度、表面处理和分辨率6方面优于广泛应用的熔融沉积模型。根据产品的体系结构, 在3D 模型中集成了一个支持结构, 以在制造过程中稳定构造。此外, 印刷后处理的制造零件是需要7,8。通常, 打印的对象被洗涤在酒精浴溶化反应树脂, 并且后续固化在一个 UV 烤箱被执行保证9聚合的完全转换。

一般而言, 基于光刻的添加剂制造的树脂依赖于含有多功能丙烯酸酯或环氧化合物10的光敏系统。目前商业市场上的光敏树脂是基于化石和昂贵的, 而低成本再生树脂的供应是需要的, 以促进生物基经济的可持续3D 产品的无废料和本地制造1,6. 最近, 以可再生丙烯酸酯为基础的光敏树脂被开发并成功应用于光固化成形3D 印刷11,12。在这个详细的协议中, 我们展示了生物基树脂在商用光固化成形设备上的快速原型。特别注意程序中的关键步骤,树脂配方和印后处理, 以帮助在添加剂制造领域的新从业者。

Protocol

警告: 使用前请查阅所有相关的材料安全数据表 (MSDS)。 1. 光敏树脂的制备 注: 请在以下程序中使用个人防护设备 (安全眼镜、手套、实验室大衣)。有关本节的详细信息, 请参阅我们以前的工作12 。 将50克 110-decanediol 丙烯酸酯 (SA5201) 倒入500毫升锥形瓶中。 将1.0 克 (24, 6-trimethylbenzoyl) 氢氧化膦 (TPO) 和0.40 克的 25-双(5-<e…

Representative Results

表 1显示了四种代表性树脂组合物, 以及它们的平均生物基碳含量 (bc), 这些成分来自于该组件的单个 BC。树脂粘度 (图 1) 受丙烯酸酯单体和寡聚物比例的影响, 典型表现为牛顿行为。用应力-应变分析法测定了不同树脂制造的零件的力学性能。图 2显示了在通用测试机上以电子模量和抗拉强度计算的代表性结果。打印?…

Discussion

添加剂制造是应用于制造的量身定做的原型和小系列, 当较高的生产成本, 每部分可以与常规工艺竞争, 因为不需要生产模具和工具。在过去十年中, 与添加剂制造业有关的服务和产品的收入增长了13。材料销售的最大部分来自 photopolymers。这一增长引起了人们的关注, 并发起了主要工业的投资,例如航空航天、汽车、医疗。因此, 3D 印刷领域有望在未来几年内进一步扩大。

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究得到 greenpac 公司聚合物应用中心的支持, 作为项目140413的一部分: “3D 印刷生产”。我们要感谢哈特曼, 科琳面包车 Noordenne, Rens 面包车 Leeuwen, Anniek 熊, Femke Tamminga, 范本面包车 Dijken 和阿尔伯特 Woortman, 以促进视频拍摄。

Materials

Isobornyl acrylate  Sartomer SA5102 Acrylate monomer
1,10-decanediol diacrylate Sartomer SA5201 Acrylate monomer
Pentaerythritol tetraacrylate Sartomer SA5400 Acrylate monomer
Multifunctional epoxy acrylate Sartomer SA7101 Acrylate oligomer
Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO), 97% Sigma Aldrich 415952 Photoinitiator
2,5-bis(5-tert-butyl-benzoxazol-2-yl)thiophene (BBOT), 99% Sigma Aldrich 223999 Optical absorber
Isopropyl alcohol (IPA), 99% Bleko 1010500 For alcohol bath (applied in Form Wash)
Paar Physica MCR300  Anton Paar Rheometer with parallel plate geometry
Form 2 Printer Formlabs Desktop SLA 3D printer
Form Wash  Formlabs Washing station
Form Cure Formlabs UV oven
Instron 4301 1KN Series IX Instron Universal testing machine
Philips XL30 ESEM-FEG  Philips Scanning electron microscope

Riferimenti

  1. Van Wijk, A., van Wijk, I. . 3D Printing with Biomaterials: Towards a Sustainable and Circular Economy. , (2015).
  2. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., Spence, D. M. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Analytical Chemistry. 86, 3240-3253 (2014).
  3. Chia, H. N., Wu, B. M. Recent advances in 3D printing of biomaterials. Journal of Biological Engineering. 9, 4 (2015).
  4. Mechels, F. P. W., Feijen, J., Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 31, 6121-6130 (2010).
  5. Skoog, S. A., Goering, P. L., Narayan, R. J. Stereolithography in tissue engineering. Journal of Materials Science: Materials in Medicine. 25, 845-856 (2014).
  6. Bhatia, S. K., Ramadurai, K. W. . 3D Printing and Bio-Based Materials in Global Health. , (2017).
  7. Oskui, S. M., Diamante, G., Liao, C., Shi, W., Gan, J., Schlenk, D., Grover, W. H. Assessing and Reducing the Toxicity of 3D-Printed Parts. Environmental Science & Technology Letters. 3, 1-6 (2016).
  8. Gong, H., Beauchamp, M., Perry, S., Woolley, A. T., Nordin, G. P. Optical approach to resin formulation for 3D printed microfluidics. RSC Advances. 5, 106621-106632 (2015).
  9. Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Advanced Materials. 28, 4449-4454 (2016).
  10. Ligon-Auer, S. C., Schwentenwein, M., Gorsche, C., Stampfl, J., Liska, R. Toughening of photo-curable polymer networks: A review. Polymer Chemistry. 7, 257-286 (2016).
  11. Miao, S., Zhu, W., Castro, N. J., Nowicki, M., Zhou, X., Cui, H., Fisher, J. P., Zhang, L. G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Scientific Reports. 6, 27226 (2016).
  12. Voet, V. S. D., Strating, T., Schnelting, G. H. M., Dijkstra, P., Tietema, M., Xu, J., Woortman, A. J. J., Loos, K., Jager, J., Folkersma, R. Biobased acrylate photocurable resin formulation for stereolithographic 3D printing. ACS Omega. 3, 1403-1408 (2018).
  13. Ligon-Auer, S. C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews. 117, 10212-10290 (2017).
  14. Weng, Z., Zhou, Y., Lin, W., Senthil, T., Wu, L. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites: Part A. 88, 234-242 (2016).
  15. Scalera, F., Esposito Corcione, C., Montagna, F., Sannino, A., Maffezzoli, A. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceramics International. 40, 15455-15462 (2014).
  16. Lee, H., Fang, N. X. Micro 3D Printing using a digital projector and its application in the study of soft materials mechanics. Journal of Visualized Experiments. (69), e4457 (2012).
  17. Huemer, K., Squirrell, J. M., Swader, R., Pelkey, K., LeBert, D. C., Huttenlocher, A., Eliceiri, K. W. Long-term live imaging device for improved experimental manipulation of zebrafish larvae. Journal of Visualized Experiments. (128), e56340 (2017).
  18. Decker, C. Light-induced crosslinking polymerization. Polymer International. 51, 1141-1150 (2002).
  19. Elliot, J. E., Bowman, C. N. Predicting network formation of free radical polymerization of multifunctional monomers. Polymer Reaction Engineering. 10, 1-19 (2002).
  20. Ellakwa, A., Cho, N., Lee, I. B. The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites. Dental Materials. 23, 1229-1235 (2007).
  21. Charton, C., Falk, V., Marchal, P., Pla, F., Colon, P. Influence of Tg, viscosity and chemical structure of monomers on shrinkage stress in light-cured dimethacrylate-based dental resins. Dental Materials. 23, 1447-1459 (2007).
check_url/it/58177?article_type=t

Play Video

Citazione di questo articolo
Voet, V. S., Schnelting, G. H., Xu, J., Loos, K., Folkersma, R., Jager, J. Stereolithographic 3D Printing with Renewable Acrylates. J. Vis. Exp. (139), e58177, doi:10.3791/58177 (2018).

View Video