Summary

Fabrication d’un Hydrogel de dérivés de matrice extracellulaire rein Cortex

Published: October 13, 2018
doi:

Summary

Nous présentons ici un protocole pour fabriquer un rein cortex extracellulaire dérivé de matrice hydrogel pour conserver la composition biochimiques et structurales du rein natif de la matrice extracellulaire (MEC). Le processus de fabrication et ses applications sont décrites. Enfin, un point de vue sur l’utilisation de cet hydrogel pour soutenir la bioingénierie et la régénération cellulaire et tissulaire rénale spécifique est discutée.

Abstract

Matrice extracellulaire (ECM) fournit des indices biochimiques et biophysiques importants pour maintenir l’homéostasie tissulaire. Hydrogels synthétiques actuels offrent soutien mécanique robuste pour in vitro culture cellulaire, mais n’ont pas la composition protéique et ligand nécessaire pour provoquer un comportement physiologique des cellules. Ce manuscrit décrit une méthode de fabrication pour un rein cortex dérivés ECM hydrogel avec bonne robustesse mécanique et la composition biochimique favorable. L’hydrogel est fabriquée par mécaniquement l’homogénéisation et cortex DECELLULARISE rein humain ECM de solubilisation. La matrice conserve les rapports de protéine native rein cortex ECM tout en permettant aussi de gélification à des rigidités mécaniques physiologiques. L’hydrogel sert de substrat sur lequel rein cortex dérivées des cellules peuvent être maintenus dans des conditions physiologiques. En outre, la composition de l’hydrogel peut être manipulée pour modéliser un environnement malade qui permet l’étude future des maladies rénales.

Introduction

Matrice extracellulaire (ECM) fournit des indices biochimiques et biophysiques importants pour maintenir l’homéostasie tissulaire. La composition moléculaire complexe régit les propriétés structurales et fonctionnelles du tissu. Protéines structurales confèrent des cellules la conscience spatiale et permettent pour l’adhérence et la migration1. Ligands liés interagissent avec les récepteurs de surface cellulaire pour contrôler le comportement de cellule2. Rein ECM contient une multitude de molécules dont la composition et structure varie selon la localisation anatomique, stade de développement et maladie état3,4. Récapitulant la complexité de l’ECM est un élément clé dans l’étude des cellules rénales in vitro.

Les tentatives précédentes à reproduire des micro-environnements ECM ont porté sur decellularizing tissus ensemble pour créer des échafaudages capables de recellularization. DÉCELLULARISATION a été exécutée avec des détergents chimiques comme le dodécylsulfate de sodium (SDS) ou détergents non ioniques, et il utilise soit organe entier perfusion ou immersion et agitation méthodes5,6,7 ,8,9,10,11,12,13. Les échafaudages présentées ici préserver les indices biochimiques et structurales, trouvés dans les tissus natifs ECM ; en outre, recellularization avec les cellules de donneur spécifique a pertinence clinique en chirurgie reconstructive14,15,16,17,18, 19. Toutefois, ces échafaudages manquent de flexibilité structurelle et sont donc incompatibles avec de nombreux appareils actuelles utilisés pour des études in vitro . Pour contourner cette limitation, de nombreux groupes ont transformés DECELLULARISE ECM en hydrogels20,21,22,23,24. Ces hydrogels sont compatibles avec bioink et moulage par injection et contourner les contraintes spatiales d’échelle micromètre qui DECELLULARISE lieu d’échafaudages sur les cellules. En outre, composition moléculaire et ratios trouvés dans les natif CME sont conservés3,25. Nous démontrons une méthode pour fabriquer un hydrogel dérivé du cortex rénal ECM (kECM).

Ce protocole vise à produire un hydrogel qui réplique le microenvironnement de la région corticale du rein. Tissu de cortex rénal est DECELLULARISE dans une solution à 1 % SDS sous agitation constante pour enlever les matières cellulaires. SDS est couramment utilisé pour decellularize les tissus en raison de sa capacité à supprimer rapidement immunologique cellulaire matériau6,7,9,26. Le kECM est ensuite soumis à l’homogénéisation mécanique et lyophilisation5,6,9,11,26. Solubilisation dans un acide fort avec la pepsine se traduit par un hydrogel final solution mère20,27. Protéines kECM indigènes qui sont importants pour la structure support et signalent transduction sont conservés3,25. L’hydrogel peut également être gélifié à un ordre de grandeur du rein humain natif cortex28,29,30. Cette matrice fournit un environnement physiologique qui a été utilisé pour maintenir la quiescence des cellules de rein spécifiques par rapport aux hydrogels d’autres protéines de la matrice. En outre, composition de la matrice peut être manipulée, par exemple, grâce à l’ajout de collagène-je, aux milieux de maladie de modèle pour l’étude de la fibrose rénale et autres reins maladies31,32.

Protocol

Reins humains ont été isolées du Nord-Ouest LifeCenter, suivant les directives éthiques fixés par l’Association des organisations de marchés orgue. Ce protocole suit animaux soins et cellule culture lignes directrices établies par l’Université de Washington. 1. préparation du tissu rénal humain Préparation de la solution de DÉCELLULARISATION Stériliser un bécher de 5000 mL et d’un bar de remuer de 70 x 10 mm. Mélanger 1/1000 (poids : volume) d…

Representative Results

L’hydrogel kECM fournit une matrice pour culture de cellules de rein avec une composition chimique similaire comme le microenvironnement rein natif. Pour fabriquer l’hydrogel, tissu de cortex rénal est mécaniquement isolé d’un organe rein entier et coupé en dés (Figure 1). DÉCELLULARISATION avec un détergent chimique (Figure 2 a.1-A.3) suivie de rinçages à l’eau pour enlever les particules de dé…

Discussion

Matrices fournissent des signaux mécaniques et chimiques importantes qui régissent le comportement de la cellule. Hydrogels synthétiques sont capables de soutenir la structuration 3-dimensional complexe mais ne parviennent pas à fournir les divers signaux extracellulaires dans des micro-environnements matrice physiologique. Hydrogels dérivés ECM natif sont des matériaux idéaux pour les études aussi bien in vivo et in vitro . Des études antérieures ont utilisé DECELLULARISE ECM hydrogels pour…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Les auteurs tiennent à souligner la Lynn et Mike Garvey Imaging de laboratoire à l’Institut des cellules souches et médecine régénérative et LifeCenter du Nord-Ouest. Ils aimerait également remercier le soutien financier de subventions National Institutes of Health, TR000504 UH2/UH3 (à J.H.) et DP2DK102258 (à Y.Z.), NIH T32 formation grant DK0007467 (pour R.J.N.) et un don sans restriction par les centres de rein du Nord-Ouest à la Institut de recherche de rein.

Materials

Preparation of Kidney Tissue
5000 mL Beaker Sigma-Aldrich Z740589
Sodium Dodecyl Sulfate (SDS) Sigma-Aldrich 436143
Sterile H2O Autoclaved DI H2O
Stir Bar (70 x 10 mm) Fisher Science 14-512-128
500 mL Vacuum Filter VWR 97066-202
Stir Plate Sigma-Aldrich CLS6795420D
1000 mL Beaker Sigma-Aldrich CLS10031L
Forceps Sigma-Aldrich F4642 Any similar forceps may be used
Scissor-Handle Hemostat Clamp Sigma-Aldrich Z168866
Dissecting Scissors Sigma-Aldrich Z265977
Scalpel Handle, No. 4 VWR 25859-000 Any similar scalpel handle may be used
Scalpel Blade, No. 20 VWR 25860-020 Any similar scalpel blade may be used
Stir Bar (38.1 x 9.5 mm) Fisher Science 14-513-52
Absorbent Underpad VWR 82020-845
Petri Dish (150 x 25 mm) Corning 430597
Autoclavable Biohazard Bag VWR 14220-026
Sterile Cell Strainer (40 um) Fisher Science 22-363-547
Cell Culture Grade Water HyClone SH30529.03
30 mL Freestanding Tube VWR 89012-778
Fabrication of ECM Gel
Tissue Homogenizer Machine Polytron PCU-20110
Freeze Dryer Labconco 7670520
20 mL Glass Scintillation Vials and Cap Sigma-Aldrich V7130
Stir Bar (15.9 x 8 mm) Fisher Science 14-513-62
Pepsin from Porcine Gastric Mucosa Sigma-Aldrich P7012
0.01 N HCl Sigma-Aldrich 320331 Dilute to 0.01 N HCl with cell culuture water
Kidney ECM Gelation
1 N NaOH (Sterile) Sigma-Aldrich 415413 Dilute to 1 N in cell culture grade water
Medium 199 Sigma-Aldrich M4530
15 mL Conical Tube ThermoFisher 339651
Cell Culture Media ThermoFisher 11330.032 Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12)
Fetal Bovine Serum (FBS) Gibco 10082147
Antibiotic-Antimycotic 100X Life Technologies 15240-062
Insulin, Transferrin, Selenium, Sodium Pyruvate Solution (ITS-A) 100X Life Technologies 51300-044
1 mL Syringe Sigma-Aldrich Z192325
Microspatula Sigma-Aldrich Z193208

Riferimenti

  1. Lelongt, B., Ronco, P. Role of extracellular matrix in kidney development and repair. Pediatric Nephrology. 18 (8), 731-742 (2003).
  2. Yue, B. Biology of the Extracellular Matrix: An Overview. Journal of Glaucoma. 23, S20-S23 (2014).
  3. Miner, J. H. Renal basement membrane components. Kidney International. 56 (6), 2016-2024 (1999).
  4. Petrosyan, A., et al. Decellularized Renal Matrix and Regenerative Medicine of the Kidney: A Different Point of View. Tissue Engineering Part B. 22 (3), 183-192 (2016).
  5. Caralt, M., et al. Optimization and Critical Evaluation of Decellularization Strategies to Develop Renal Extracellular Matrix Scaffolds as Biological Templates for Organ Engineering and Transplantation. American Journal of Transplantation. 15 (1), 64-75 (2015).
  6. Nakayama, K. H., Batchelder, C. A., Lee, C. I., Tarantal, A. F. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Engineering Part A. 16 (7), 2207-2216 (2010).
  7. Nakayama, K. H., Lee, C. C. I., Batchelder, C. A., Tarantal, A. F. Tissue Specificity of Decellularized Rhesus Monkey Kidney and Lung Scaffolds. Public Library of Science ONE. 8 (5), (2013).
  8. Orlando, G., et al. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Annals of Surgery. 256 (2), 363-370 (2012).
  9. Sullivan, D. C., et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 33 (31), 7756-7764 (2012).
  10. Choi, S. H., et al. Development of a porcine renal extracellular matrix scaffold as a platform for kidney regeneration. Journal of Biomedical Materials Research Part A. 103 (4), 1391-1403 (2015).
  11. Ross, E. A., et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis. 8 (2), 49-55 (2012).
  12. Nagao, R. J., et al. Decellularized Human Kidney Cortex Hydrogels Enhance Kidney Microvascular Endothelial Cell Maturation and Quiescence. Tissue Engineering Part A. 22 (19-20), 1140-1150 (2016).
  13. Gupta, S. K., Mishra, N. C., Dhasmana, A. Decellularization Methods for Scaffold Fabrication. Methods in Molecular Biology. , 1-10 (2017).
  14. Hudson, T., et al. Optimized Acellular Nerve Graft is Immunologically Tolerated and Supports Regeneration. Tissue Engineering. 10 (11), 1641-1651 (2004).
  15. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 367 (9518), 1241-1246 (2006).
  16. Ott, H. C., et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Medicine. 14 (2), 213-221 (2008).
  17. Uygun, B., et al. Organ reengineering through development of a transplantable recellularied liver graft using decellularized liver matrix. Nature Medicine. 16 (7), 814-820 (2010).
  18. Nagao, R. J., et al. Preservation of Capillary-beds in Rat Lung Tissue Using Optimized Chemical Decellularization. Journal of Materials Chemistry B. 1 (37), 4801-4808 (2013).
  19. Song, J. J., et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine. 19 (5), 646-651 (2013).
  20. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S., Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 29 (11), 1630-1637 (2008).
  21. Wolf, M. T., et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials. 33 (29), 7028-7038 (2012).
  22. Fisher, M. B., et al. Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surgery, Sports Traumatology, Arthroscopy. 20 (7), 1357-1365 (2012).
  23. Ghuman, H., et al. ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate. Biomaterials. 91, 166-181 (2016).
  24. Rijal, G. The decellularized extracellular matrix in regenerative medicine. Regenerative Medicine. 12 (5), 475-477 (2017).
  25. Lennon, R., et al. Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix. Journal of the American Society of Nephrology. 25 (5), 939-951 (2014).
  26. Bonandrini, B., et al. Recellularization of Well-Preserved Acellular Kidney Scaffold Using Embryonic Stem Cells. Tissue Engineering Part A. 20 (9-10), 1486-1498 (2014).
  27. O’Neill, J. D., Freytes, D. O., Anandappa, A. J., Oliver, J. A., Vunjak-Novakovic, G. V. The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials. 34 (38), 9830-9841 (2013).
  28. Streitberger, K. -. J., et al. High-resolution mechanical imaging of the kidney. Journal of Biomechanics. 47 (3), 639-644 (2014).
  29. Bensamoun, S. F., et al. Stiffness imaging of the kidney and adjacent abdominal tissues measured simultaneously using magnetic resonance elastography. Clinical Imaging. 35 (4), 284-287 (2011).
  30. Moon, S. K., et al. Quantification of Kidney Fibrosis Using Ultrasonic Shear Wave Elastography. Journal of Ultrasound in Medicine. 34, 869-877 (2015).
  31. Genovese, F., Manresa, A. A., Leeming, D. J., Karsdal, M. A., Boor, P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis?. Fibrogenesis & Tissue Repair. 7 (1), (2014).
  32. Hewitson, T. D. Fibrosis in the kidney: is a problem shared a problem halved?. Fibrogenes & Tissue Repair. 5 (1), S14 (2012).
  33. Wolf, M. T., et al. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. Journal of Biomedical Materials Research Part A. 102 (1), 234-246 (2014).
  34. Faulk, D. M., et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 35 (30), 8585-8595 (2014).
  35. Jeffords, M. E., Wu, J., Shah, M., Hong, Y., Zhang, G. Tailoring Material Properties of Cardiac Matrix Hydrogels To Induce Endothelial Differentiation of Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces. 7 (20), 11053-11061 (2015).
  36. Kim, M. -. S., et al. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy. Public Library of Science ONE. 11 (5), e0156038 (2016).
  37. Paduano, F., Marrelli, M., White, L. J., Shakesheff, K. M., Tatullo, M. Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. Public Library of Science ONE. 11 (2), e0148225 (2016).
  38. Viswanath, A., et al. Extracellular matrix-derived hydrogels for dental stem cell delivery. Journal of Biomedical Materials Research Part A. 105 (1), 319-328 (2017).
  39. Uriel, S., et al. Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering. Tissue Engineering Part C Methods. 15 (3), 309-321 (2009).
  40. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia. 49, 1-15 (2017).
  41. Faust, A., et al. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. Journal of Biomaterials Applications. 31 (9), 1277-1295 (2017).
  42. Pouliot, R. A., et al. Development and characterization of a naturally derived lung extracellular matrix hydrogel. Journal of Biomedical Materials Research Part A. 104 (8), 1922-1935 (2016).
  43. Pati, F., et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications. 5, 3935 (2014).
  44. Pati, F., et al. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 62, 164-175 (2015).
  45. Wang, R. M., Christman, K. L. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies. Advanced Drug Delivery Reviews. 96, 77-82 (2016).
  46. Jang, J., et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 112, 264-274 (2017).
  47. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science. 123 (Pt 24), 4195-4200 (2010).
  48. Mouw, J. K., Ou, G., Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology. 15 (12), 771-785 (2014).
  49. Bonnans, C., Chou, J., Werb, Z. Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology. 15 (12), 786-801 (2014).
  50. Hinderer, S., Layland, S. L., Schenke-Layland, K. ECM and ECM-like materials – Biomaterials for applications in regenerative medicine and cancer therapy. Advanced Drug Delivery Reviews. 97, 260-269 (2016).
  51. Uriel, S., et al. The role of adipose protein derived hydrogels in adipogenesis. Biomaterials. 29 (27), 3712-3719 (2008).
  52. Singelyn, J. M., et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 30 (29), 5409-5416 (2009).
  53. Medberry, C. J., et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials. 34 (4), 1033-1040 (2013).
  54. Loneker, A. E., Faulk, D. M., Hussey, G. S., D’Amore, A., Badylak, S. F. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro. Journal of Biomedical Materials Research Part A. 104 (4), 957-965 (2016).
  55. Hill, R. C., Calle, E. A., Dzieciatkowska, M., Niklason, L. E., Hansen, K. C. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Molecular & Cellular Proteomics. 14 (4), 961-973 (2015).
  56. Li, Q., et al. Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials. 75, 37-46 (2016).
  57. Tanaka, T., Yada, R. Y. N-terminal portion acts as an initiator of the inactivation of pepsin at neutral pH. Protein Engineering. 14 (9), 669-674 (2001).
  58. Ligresti, G., et al. A Novel Three-Dimensional Human Peritubular Microvascular System. Journal of the American Society of Nephrology. 27 (8), 2370-2381 (2016).
  59. Mozes, M. M., Böttinger, E. P., Jacot, T. A., Kopp, J. B. Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice. Journal of the American Society of Nephrology. 10 (2), 271-280 (1999).
  60. Romanowicz, L., Galewska, Z. Extracellular matrix remodeling of the umbilical cord in pre-eclampsia as a risk factor for fetal hypertension. Journal of Pregnancy. 2011, 542695 (2011).
check_url/it/58314?article_type=t

Play Video

Citazione di questo articolo
Hiraki, H. L., Nagao, R. J., Himmelfarb, J., Zheng, Y. Fabricating a Kidney Cortex Extracellular Matrix-Derived Hydrogel. J. Vis. Exp. (140), e58314, doi:10.3791/58314 (2018).

View Video