Summary

Fabricando um rim córtex Extracellular Matrix-derivado hidrogel

Published: October 13, 2018
doi:

Summary

Aqui nós apresentamos um protocolo para fabricar um rim córtex extracelulares matriz-derivado hidrogel para manter a composição de estruturais e bioquímicos de matriz extracelular (ECM) do rim nativo. O processo de fabricação e suas aplicações são descritas. Finalmente, uma perspectiva sobre como usar este hidrogel para apoiar a bioengenharia e a regeneração celular e tecido de rim-específicas é discutida.

Abstract

Matriz extracelular (ECM) fornece importantes pistas biofísicas e bioquímicas para manter a homeostase do tecido. Hidrogel sintético atual oferece suporte mecânico robusto em vitro cultura de células, mas falta a composição de proteínas e ligante necessária para eliciar comportamentos fisiológicos das células. Este manuscrito descreve um método de fabricação para um hidrogel de ECM-derivado de córtex renal com robustez mecânica adequada e apoia composição bioquímica. O hidrogel é fabricada por mecanicamente, homogeneizando e solubilizing córtex renal humana decellularized ECM. A matriz preserva rácios de proteína nativa renal córtex ECM, permitindo também a criação de gelificação para stiffnesses mecânicas fisiológicas. O hidrogel serve como substrato ao qual nos rins córtex-derivado de células podem ser mantidas sob condições fisiológicas. Além disso, a composição de hidrogel pode ser manipulada para modelar um ambiente de doente que permite o estudo futuro das doenças renais.

Introduction

Matriz extracelular (ECM) fornece importantes pistas biofísicas e bioquímicas para manter a homeostase do tecido. A composição molecular complexa regula propriedades estruturais e funcionais do tecido. Proteínas estruturais fornecem células com consciência espacial e permitam a migração e adesão1. Ligantes acoplados interagem com receptores de superfície celular para controlar o comportamento de célula2. Rim ECM contém uma infinidade de moléculas cuja composição e estrutura varia dependendo da localização anatômica, grau de desenvolvimento e doença estado3,4. Recapitulando a complexidade do ECM é um aspecto fundamental no estudo de células de rim-derivado em vitro.

Tentativas anteriores de replicar o microambiente ECM focaram-se decellularizing todo tecido para criar andaimes capaz de recellularization. Decellularization tem sido realizado com detergentes químicos tais como sulfato dodecyl de sódio (SDS) ou detergentes não-iônicos, e utiliza qualquer órgão inteiro perfusão ou imersão e agitação métodos5,6,7 ,8,9,10,11,12,13. Os andaimes aqui apresentados preservar as pistas estruturais e bioquímicas encontradas no tecido nativo ECM; Além disso, recellularization com células específicas do doador tem relevância clínica em cirurgia reconstrutiva14,15,16,17,18, 19. no entanto, estes andaimes falta flexibilidade estrutural e, portanto, são incompatíveis com muitos dispositivos atuais usados para estudos em vitro . Para contornar essa limitação, muitos grupos têm ulteriormente decellularized ECM em hidrogel20,21,22,23,24. Estes hidrogel é compatíveis com bioink e moldagem por injeção e contornar micrômetro escala espacial restrições que decellularized lugar de andaimes nas células. Além disso, a composição molecular e rácios encontrados em ECM nativo são preservados3,25. Aqui vamos demonstrar um método para fabricar um hidrogel derivado de córtex renal ECM (kECM).

O propósito do presente protocolo é produzir um hidrogel que Replica o microambiente da região cortical do rim. Tecido de córtex renal é decellularized em uma solução de SDS 1% sob agitação constante para remover a matéria celular. SDS é comumente usado para decellularize de tecido devido à sua capacidade de remover rapidamente o material celular imunológica6,7,9,26. O kECM é então sujeito a homogeneização mecânica e liofilização5,6,9,11,26. Solubilização de um ácido forte com pepsina resulta em uma solução de hidrogel final20,27. KECM nativo de proteínas que são importantes para estrutural suportam e sinal de transdução estão preservados3,25. O hidrogel pode também ser gelificada para dentro de uma ordem de magnitude de rim humano nativo córtex28,29,30. Esta matriz fornece um ambiente fisiológico que tem sido usado para manter a quiescência de células específicas do rim em comparação com hidrogel de outras proteínas da matriz. Além disso, composição da matriz pode ser manipulada, por exemplo, através da adição de colágeno-I, ambientes de doença de modelo para o estudo de fibrose renal e outras doenças de rim31,32.

Protocol

Rins humanos foram isolados por LifeCenter noroeste seguindo as diretrizes éticas, definidas pela Associação de organizações de contratos órgão. Este protocolo segue animais cuidados e célula cultura diretrizes delineadas pela Universidade de Washington. 1. preparação do tecido do rim humano Preparação da solução de decellularization Esterilize um copo de 5000 mL e uma barra de agitação de 70 x 10mm. Misture 1: 1000 (peso: volume) Dodecil sulfato de…

Representative Results

O hidrogel de kECM fornece uma matriz para cultura de células de rim com composição química similar como o microambiente de rim nativo. Para fabricar o hidrogel, tecido de córtex renal é mecanicamente isolado de um órgão de rim e cubos (Figura 1). Decellularization com um detergente químico (Figura 2AA..1-3), seguido de lavagens com água para remover partículas de detergente (Figur…

Discussion

Matrizes fornecem importantes dicas mecânicas e químicas que regem o comportamento da célula. Hidrogel sintético é capazes de apoiar a padronização 3-dimensional complexa mas não apresentar as diversas pistas extracelulares encontradas no microambiente matriz fisiológica. Hidrogel derivado de ECM nativo é materiais ideais para estudos tanto in vivo e in vitro . Estudos anteriores usaram decellularized ECM hidrogel para revestir biomateriais sintéticos para evitar33<sup…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Os autores gostaria de reconhecer a Lynn e Mike Garvey Imaging laboratório do Instituto de células-tronco e medicina regenerativa e LifeCenter noroeste. Eles também gostaria de agradecer o apoio financeiro da National Institutes of Health subvenções, UH2/UH3 TR000504 (de J.H.) e DP2DK102258 (para Y.Z.), NIH T32 formação grant DK0007467 (R.J.N.) e um presente sem restrições os centros de rim do noroeste para o Instituto de pesquisa do rim.

Materials

Preparation of Kidney Tissue
5000 mL Beaker Sigma-Aldrich Z740589
Sodium Dodecyl Sulfate (SDS) Sigma-Aldrich 436143
Sterile H2O Autoclaved DI H2O
Stir Bar (70 x 10 mm) Fisher Science 14-512-128
500 mL Vacuum Filter VWR 97066-202
Stir Plate Sigma-Aldrich CLS6795420D
1000 mL Beaker Sigma-Aldrich CLS10031L
Forceps Sigma-Aldrich F4642 Any similar forceps may be used
Scissor-Handle Hemostat Clamp Sigma-Aldrich Z168866
Dissecting Scissors Sigma-Aldrich Z265977
Scalpel Handle, No. 4 VWR 25859-000 Any similar scalpel handle may be used
Scalpel Blade, No. 20 VWR 25860-020 Any similar scalpel blade may be used
Stir Bar (38.1 x 9.5 mm) Fisher Science 14-513-52
Absorbent Underpad VWR 82020-845
Petri Dish (150 x 25 mm) Corning 430597
Autoclavable Biohazard Bag VWR 14220-026
Sterile Cell Strainer (40 um) Fisher Science 22-363-547
Cell Culture Grade Water HyClone SH30529.03
30 mL Freestanding Tube VWR 89012-778
Fabrication of ECM Gel
Tissue Homogenizer Machine Polytron PCU-20110
Freeze Dryer Labconco 7670520
20 mL Glass Scintillation Vials and Cap Sigma-Aldrich V7130
Stir Bar (15.9 x 8 mm) Fisher Science 14-513-62
Pepsin from Porcine Gastric Mucosa Sigma-Aldrich P7012
0.01 N HCl Sigma-Aldrich 320331 Dilute to 0.01 N HCl with cell culuture water
Kidney ECM Gelation
1 N NaOH (Sterile) Sigma-Aldrich 415413 Dilute to 1 N in cell culture grade water
Medium 199 Sigma-Aldrich M4530
15 mL Conical Tube ThermoFisher 339651
Cell Culture Media ThermoFisher 11330.032 Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12)
Fetal Bovine Serum (FBS) Gibco 10082147
Antibiotic-Antimycotic 100X Life Technologies 15240-062
Insulin, Transferrin, Selenium, Sodium Pyruvate Solution (ITS-A) 100X Life Technologies 51300-044
1 mL Syringe Sigma-Aldrich Z192325
Microspatula Sigma-Aldrich Z193208

Riferimenti

  1. Lelongt, B., Ronco, P. Role of extracellular matrix in kidney development and repair. Pediatric Nephrology. 18 (8), 731-742 (2003).
  2. Yue, B. Biology of the Extracellular Matrix: An Overview. Journal of Glaucoma. 23, S20-S23 (2014).
  3. Miner, J. H. Renal basement membrane components. Kidney International. 56 (6), 2016-2024 (1999).
  4. Petrosyan, A., et al. Decellularized Renal Matrix and Regenerative Medicine of the Kidney: A Different Point of View. Tissue Engineering Part B. 22 (3), 183-192 (2016).
  5. Caralt, M., et al. Optimization and Critical Evaluation of Decellularization Strategies to Develop Renal Extracellular Matrix Scaffolds as Biological Templates for Organ Engineering and Transplantation. American Journal of Transplantation. 15 (1), 64-75 (2015).
  6. Nakayama, K. H., Batchelder, C. A., Lee, C. I., Tarantal, A. F. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Engineering Part A. 16 (7), 2207-2216 (2010).
  7. Nakayama, K. H., Lee, C. C. I., Batchelder, C. A., Tarantal, A. F. Tissue Specificity of Decellularized Rhesus Monkey Kidney and Lung Scaffolds. Public Library of Science ONE. 8 (5), (2013).
  8. Orlando, G., et al. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Annals of Surgery. 256 (2), 363-370 (2012).
  9. Sullivan, D. C., et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 33 (31), 7756-7764 (2012).
  10. Choi, S. H., et al. Development of a porcine renal extracellular matrix scaffold as a platform for kidney regeneration. Journal of Biomedical Materials Research Part A. 103 (4), 1391-1403 (2015).
  11. Ross, E. A., et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis. 8 (2), 49-55 (2012).
  12. Nagao, R. J., et al. Decellularized Human Kidney Cortex Hydrogels Enhance Kidney Microvascular Endothelial Cell Maturation and Quiescence. Tissue Engineering Part A. 22 (19-20), 1140-1150 (2016).
  13. Gupta, S. K., Mishra, N. C., Dhasmana, A. Decellularization Methods for Scaffold Fabrication. Methods in Molecular Biology. , 1-10 (2017).
  14. Hudson, T., et al. Optimized Acellular Nerve Graft is Immunologically Tolerated and Supports Regeneration. Tissue Engineering. 10 (11), 1641-1651 (2004).
  15. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 367 (9518), 1241-1246 (2006).
  16. Ott, H. C., et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Medicine. 14 (2), 213-221 (2008).
  17. Uygun, B., et al. Organ reengineering through development of a transplantable recellularied liver graft using decellularized liver matrix. Nature Medicine. 16 (7), 814-820 (2010).
  18. Nagao, R. J., et al. Preservation of Capillary-beds in Rat Lung Tissue Using Optimized Chemical Decellularization. Journal of Materials Chemistry B. 1 (37), 4801-4808 (2013).
  19. Song, J. J., et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine. 19 (5), 646-651 (2013).
  20. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S., Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 29 (11), 1630-1637 (2008).
  21. Wolf, M. T., et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials. 33 (29), 7028-7038 (2012).
  22. Fisher, M. B., et al. Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surgery, Sports Traumatology, Arthroscopy. 20 (7), 1357-1365 (2012).
  23. Ghuman, H., et al. ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate. Biomaterials. 91, 166-181 (2016).
  24. Rijal, G. The decellularized extracellular matrix in regenerative medicine. Regenerative Medicine. 12 (5), 475-477 (2017).
  25. Lennon, R., et al. Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix. Journal of the American Society of Nephrology. 25 (5), 939-951 (2014).
  26. Bonandrini, B., et al. Recellularization of Well-Preserved Acellular Kidney Scaffold Using Embryonic Stem Cells. Tissue Engineering Part A. 20 (9-10), 1486-1498 (2014).
  27. O’Neill, J. D., Freytes, D. O., Anandappa, A. J., Oliver, J. A., Vunjak-Novakovic, G. V. The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials. 34 (38), 9830-9841 (2013).
  28. Streitberger, K. -. J., et al. High-resolution mechanical imaging of the kidney. Journal of Biomechanics. 47 (3), 639-644 (2014).
  29. Bensamoun, S. F., et al. Stiffness imaging of the kidney and adjacent abdominal tissues measured simultaneously using magnetic resonance elastography. Clinical Imaging. 35 (4), 284-287 (2011).
  30. Moon, S. K., et al. Quantification of Kidney Fibrosis Using Ultrasonic Shear Wave Elastography. Journal of Ultrasound in Medicine. 34, 869-877 (2015).
  31. Genovese, F., Manresa, A. A., Leeming, D. J., Karsdal, M. A., Boor, P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis?. Fibrogenesis & Tissue Repair. 7 (1), (2014).
  32. Hewitson, T. D. Fibrosis in the kidney: is a problem shared a problem halved?. Fibrogenes & Tissue Repair. 5 (1), S14 (2012).
  33. Wolf, M. T., et al. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. Journal of Biomedical Materials Research Part A. 102 (1), 234-246 (2014).
  34. Faulk, D. M., et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 35 (30), 8585-8595 (2014).
  35. Jeffords, M. E., Wu, J., Shah, M., Hong, Y., Zhang, G. Tailoring Material Properties of Cardiac Matrix Hydrogels To Induce Endothelial Differentiation of Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces. 7 (20), 11053-11061 (2015).
  36. Kim, M. -. S., et al. Differential Expression of Extracellular Matrix and Adhesion Molecules in Fetal-Origin Amniotic Epithelial Cells of Preeclamptic Pregnancy. Public Library of Science ONE. 11 (5), e0156038 (2016).
  37. Paduano, F., Marrelli, M., White, L. J., Shakesheff, K. M., Tatullo, M. Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. Public Library of Science ONE. 11 (2), e0148225 (2016).
  38. Viswanath, A., et al. Extracellular matrix-derived hydrogels for dental stem cell delivery. Journal of Biomedical Materials Research Part A. 105 (1), 319-328 (2017).
  39. Uriel, S., et al. Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering. Tissue Engineering Part C Methods. 15 (3), 309-321 (2009).
  40. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia. 49, 1-15 (2017).
  41. Faust, A., et al. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. Journal of Biomaterials Applications. 31 (9), 1277-1295 (2017).
  42. Pouliot, R. A., et al. Development and characterization of a naturally derived lung extracellular matrix hydrogel. Journal of Biomedical Materials Research Part A. 104 (8), 1922-1935 (2016).
  43. Pati, F., et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications. 5, 3935 (2014).
  44. Pati, F., et al. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 62, 164-175 (2015).
  45. Wang, R. M., Christman, K. L. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies. Advanced Drug Delivery Reviews. 96, 77-82 (2016).
  46. Jang, J., et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 112, 264-274 (2017).
  47. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science. 123 (Pt 24), 4195-4200 (2010).
  48. Mouw, J. K., Ou, G., Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology. 15 (12), 771-785 (2014).
  49. Bonnans, C., Chou, J., Werb, Z. Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology. 15 (12), 786-801 (2014).
  50. Hinderer, S., Layland, S. L., Schenke-Layland, K. ECM and ECM-like materials – Biomaterials for applications in regenerative medicine and cancer therapy. Advanced Drug Delivery Reviews. 97, 260-269 (2016).
  51. Uriel, S., et al. The role of adipose protein derived hydrogels in adipogenesis. Biomaterials. 29 (27), 3712-3719 (2008).
  52. Singelyn, J. M., et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 30 (29), 5409-5416 (2009).
  53. Medberry, C. J., et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials. 34 (4), 1033-1040 (2013).
  54. Loneker, A. E., Faulk, D. M., Hussey, G. S., D’Amore, A., Badylak, S. F. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro. Journal of Biomedical Materials Research Part A. 104 (4), 957-965 (2016).
  55. Hill, R. C., Calle, E. A., Dzieciatkowska, M., Niklason, L. E., Hansen, K. C. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Molecular & Cellular Proteomics. 14 (4), 961-973 (2015).
  56. Li, Q., et al. Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials. 75, 37-46 (2016).
  57. Tanaka, T., Yada, R. Y. N-terminal portion acts as an initiator of the inactivation of pepsin at neutral pH. Protein Engineering. 14 (9), 669-674 (2001).
  58. Ligresti, G., et al. A Novel Three-Dimensional Human Peritubular Microvascular System. Journal of the American Society of Nephrology. 27 (8), 2370-2381 (2016).
  59. Mozes, M. M., Böttinger, E. P., Jacot, T. A., Kopp, J. B. Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice. Journal of the American Society of Nephrology. 10 (2), 271-280 (1999).
  60. Romanowicz, L., Galewska, Z. Extracellular matrix remodeling of the umbilical cord in pre-eclampsia as a risk factor for fetal hypertension. Journal of Pregnancy. 2011, 542695 (2011).
check_url/it/58314?article_type=t

Play Video

Citazione di questo articolo
Hiraki, H. L., Nagao, R. J., Himmelfarb, J., Zheng, Y. Fabricating a Kidney Cortex Extracellular Matrix-Derived Hydrogel. J. Vis. Exp. (140), e58314, doi:10.3791/58314 (2018).

View Video