Summary

哺乳动物细胞血浆膜检测效率的高通量测量

Published: January 07, 2019
doi:

Summary

在这里, 我们描述了一种高通量荧光检测, 通过在活细胞中的荧光和成像分析测量质膜的重接受效率。该检测方法可用于筛选调节哺乳动物细胞质膜重密封的药物或靶向基因。

Abstract

在其生理环境中, 哺乳动物细胞经常受到机械和生化压力, 导致质膜损伤。为了应对这些损伤, 复杂的分子机械迅速重新密封质膜, 以恢复其屏障功能, 并保持细胞存活。尽管在这一领域进行了60年的研究, 但我们仍然缺乏对细胞重闭机械的透彻了解。为了识别控制质膜再密封的细胞成分或可以改善再密封的药物, 我们开发了一种基于荧光的高通量检测方法, 用于测量哺乳动物细胞中的质膜再密封效率在微板中培养。作为细胞膜损伤的模型系统, 细胞暴露在细菌形成毒素李斯特菌素 o (l低铁) 中, 在含胆固醇的膜中形成直径30-50 纳米的大型蛋白质孔。使用温度控制的多模微板读取器, 可以结合明亮场和荧光显微镜成像活细胞进行快速和灵敏的光谱测量。对膜不含核酸结合荧光铬发出的荧光强度进行动力学分析, 反映了细胞膜在细胞群体中的损伤和再密封程度, 从而可以计算细胞的保存效率.荧光显微镜成像允许细胞的计数, 这在宪法上表达了核蛋白组蛋白 2 b 的荧光嵌合体, 在微板的每口井, 以考虑其数量的潜在变化, 并允许最终识别不同的细胞群。这种高通量检测是一个强大的工具, 有望通过筛选宿主基因或控制质膜重新密封的外源添加化合物来扩大我们对膜修复机制的了解。

Introduction

哺乳动物细胞受到机械、渗透和生化胁迫, 导致细胞膜完整性的丧失。如果没有快速有效的重新密封, 受损的细胞很快就会死于有程序或坏死的死亡。自20世纪60年代以来, 了解质膜重密封过程的努力的动机是其功能障碍带来的破坏性后果。事实上, 像肢体腰带肌肉营养不良症、糖尿病和 chediak-higashi 综合征这样的疾病与由于基因编码异常的突变、先进的糖基化终产物的生产以及缺陷而导致的质膜修复不足有关。溶酶体贩运调节剂 chs1,分别为 123、4、56.然而, 到目前为止, 我们对膜重封的理解仍然有限。初步研究表明, 膜复位是由细胞外 ca2+通过受损的质膜 8,9,10的流入引发的。自那时以来, 几个非相互排斥的 ca2 +依赖机制已被提出重新体细胞。贴片假说提出, 在接近伤口的细胞内囊泡融合在一起, 并将受损的质膜作为贴片 11,12,13,14。第二个模型提出, 钙依赖性的溶酶体在伤口部位的渗出释放溶酶酸 sphingomyelinase, 它将 sphingomyelin 转化为质膜外单中的神经酰胺。脂质组成的这种突然变化导致受损区域151617的神经酰胺驱动的内吞。最后, 第三个拟议的机制涉及运输所需的子宫内膜分枝复合体 (escrt) 的作用, 以促进从质膜18中脱落的向外的囊泡的形成。在这些模型中只发现了一组有限的蛋白质, 必须进一步阐明它们的机制。

在这里, 我们描述了一种高通量的测定膜重组李斯特菌蛋白 o (l库)19介导的损伤的粘附哺乳动物细胞的膜重组效率。llo 是一种成孔毒素 (pft), 由细胞内的兼发性病原菌单细胞增生李斯特菌 202122分泌, 属于 macpf按 cdc (膜攻击复合体, 穿孔,胆固醇依赖性细胞分裂素) 超家族。macpf 是参与免疫防御的哺乳动物成孔蛋白, 而 cdc 是细菌毒素, 主要由革兰氏阳性病原体产生, 损害宿主细胞, 促进其致病性生活方式23。cdc 被合成为水溶性单体或二聚体, 结合质膜中的胆固醇, 并将寡聚结合成最多50个亚基的前孢子复合体。然后, 前孔复合物重新排列, 在脂质双层层上插入β链, 形成直径为 24252627的β桶孔。 这些大毛孔允许离子和小细胞成分进出细胞;不过, 一些研究提出, 较小尺寸的毛孔也会形成 282 93 0.在 cdc 中, llo 显示出独特的特性, 包括不可逆的 ph 和温度相关的聚合, 这有利于高吞吐量分析31,32。llo 可以在4°c 时添加到细胞培养培养基中, 温度允许其与细胞结合, 但不能添加到孔隙复合体的形成中。然后, 可以通过将温度提高到37°c 来同步孔隙形成的启动, 从而使毒素分子在膜平面上有效扩散, 形成低聚物, 并进行与孔隙生成有关的构象重塑。因此, 随着温度的变化, 细胞损伤的动力学将取决于与质膜结合的毒素量。重要的是, 当温度达到37°c 时, 可溶性 llo (不与质膜结合) 会迅速且不可逆转地聚集在一起, 从而缓解了冲洗未结合毒素分子的需要, 并随着时间的推移限制了膜的损伤程度。最后, 由于 llo 与胆固醇结合, 并在富含胆固醇的膜中形成毛孔, 这种检测方法适用于多种哺乳动物细胞。重要的是要记住, llo 主要通过孔隙形成影响宿主细胞信号, 除了少数例外, 在这些情况下, 与孔隙无关的细胞信号转导可能会发生33343536 ,37,38,39。因此, 不能排除 llo 信号活动可能会影响膜修复过程。

该检测方法通过测量被动进入损伤细胞并与核酸连接后成为高荧光细胞的小不含氟铬细胞 (例如碘化钠) 的含量, 直接评估细胞损伤的程度.因此, 在整个实验过程中, 荧光铬可以保存在细胞培养介质中, 从而能够实时分析细胞损伤。核酸结合染料的荧光强度会随着毒素的浓度而增加, 对于一定浓度的毒素, 随着时间的推移, 会随着时间的推移而增加, 直到所有毛孔形成, 细胞完全修复或达到饱和度。细胞外 ca2+通过膜孔的涌入是重新密封的必要条件。因此, 通过比较含有 ca2 + (修复允许条件) 的培养基中的细胞损伤与 ca2+ 无损伤 (修复限制性条件) 的损伤, 可以间接地证明细胞损伤的恢复效率。由于核酸结合染料的荧光强度与每口井的细胞浓度成正比, 因此所有油井中相同浓度的种子细胞都很重要。同样重要的是, 在检测前后的每口井中列举细胞, 以确保细胞分离不会发生, 因为漂浮的聚集细胞可能会掩盖荧光读数, 从而使数据解释复杂化。为了列举细胞, 本试验中使用了表达核局部组蛋白 2b-gfp (h2b-gfp) 的细胞。温度控制的多模微板读取器将荧光强度的快速、高吞吐量测量 (使用96或384个孔板格式) 与37°c 下活细胞的显微镜成像相结合。后者可用于列举细胞数量和观察不同细胞群的最终形成。

最终, 这种检测方法通过筛选宿主分子或可能控制膜修复的外源添加化合物, 为用户提供了扩大其对膜修复机制复杂性的了解的能力。下面的协议描述了测量暴露于 llo 的细胞的重密封效率的实验步骤, 并评估特定药物或细胞治疗对重密封效率的影响。

Protocol

1. 准备工作 电池电镀注: 本协议中使用了人宫颈上皮细胞、hela 和 hela 表达组蛋白 2b-gfp (h2b-gfp), 但该检测方法可适用于其他哺乳动物细胞19。 用2毫升的胰蛋白酶-edta 0.25% 清洗细胞, 从75厘米2细胞培养瓶中分离粘附细胞。将使用过的胰蛋白酶替换为2毫升的新鲜胰蛋白酶 edta 0.25%。 在37°c 下将细胞加氢 5分钟, 直到细胞圆形并与烧瓶分离。 在…

Representative Results

细胞计数的准确性: hela 细胞经常被用作哺乳动物细胞系的模型, 以探索膜修复机制。在评估细胞群体水平的膜修复时, 重要的是将所有油井中浓度相同的细胞进行平板, 以进行适当的数据解释。在检测时, 验证细胞数量在井间是否相等也很重要。本试验引入了本构表达组蛋白2b 融合到 gfp (h2b-gfp) 的平列细胞, 以便在检测其荧光核的基础上自动列举细胞。为了确定细胞计数的?…

Discussion

该方法测量了具有高通量的细胞群体水平上的膜再密封效率。它可用于筛选可能影响膜修复的细胞成分或药物库。所述检测采用了96孔板格式, 但可适用于384孔板, 以获得更高的吞吐量。该方法的优点是能够实时获得粘附活细胞的荧光测量, 而无需进行过多的细胞处理, 如细胞分离、固定或荧光标记固定后。多模板读取器 (如本协议中使用的读取器) 具有足够的灵敏度, 可在96孔板的时间间隔低至30秒?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢 jesse kwiek 博士 (俄亥俄州立大学) 善意地允许我们使用他的多模式检测平台进行一些初步实验。本文报告的研究得到了国家卫生研究院国家过敏和传染病研究所的支持, 该研究所的编号为 ro1ai107250, 授予 stephanie seveau。内容完全由作者负责, 不一定代表国家卫生研究院的官方观点。

Materials

SpectraMax i3x Multi-Mode Microplate Reader Molecular Devices i3x
MiniMax 300 Imaging cytometer Molecular Devices 5024062
TO-PRO-3 ThermoFisher Scientific T3605
Propidium Iodide ThermoFisher Scientific P3566
HeLa ATCC CCL2
HeLa H2B-GFP Millipore SCC117
Trypsin-EDTA 0.25% ThermoFisher Scientific 25200056
96-well Corning flat bottom black polystyrene tissue culture treated plate Corning 3603
Hanks' balanced Salts Sigma-Aldrich H4891
EGTA ISC BioExpress 0732-100G
HEPES Fisher Scientific BP310-500
D-(+)-Glucose, HybriMax Sigma-Aldrich G5146-1KG

Riferimenti

  1. Demonbreun, A. R., McNally, E. M. Plasma Membrane Repair in Health and Disease. Current Topics in Membranes. 77, 67-96 (2016).
  2. Howard, A. C., McNeil, A. K., McNeil, P. L. Promotion of plasma membrane repair by vitamin E. Nature Communications. 2, 597 (2011).
  3. Howard, A. C., et al. A novel cellular defect in diabetes: membrane repair failure. Diabetes. 60 (11), 3034-3043 (2011).
  4. Lozano, M. L., et al. Towards the targeted management of Chediak-Higashi syndrome. Orphanet Journal of Rare Diseases. 9, 132 (2014).
  5. Vainzof, M., et al. Dysferlin protein analysis in limb-girdle muscular dystrophies. Journal of Molecular Neuroscience. 17 (1), 71-80 (2001).
  6. Huynh, C., et al. Defective lysosomal exocytosis and plasma membrane repair in Chediak-Higashi/beige cells. Proceeding of the National Academy of Sciences of the United States of America. 101 (48), 16795-16800 (2004).
  7. Cooper, S. T., McNeil, P. L. Membrane Repair: Mechanisms and Pathophysiology. Physiological Reviews. 95 (4), 1205-1240 (2015).
  8. Steinhardt, R. A., Bi, G., Alderton, J. M. J. M. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science. 263 (5145), 390-393 (1994).
  9. De Mello, W. C. Membrane sealing in frog skeletal-muscle fibers. Proceedings of the National Academy of Sciences of the United States of America. 70 (4), 982-984 (1973).
  10. Fishman, H. M., Tewari, K. P., Stein, P. G. Injury-induced vesiculation and membrane redistribution in squid giant axon. Biochimica et Biophysica Acta. 1023 (3), 421-435 (1990).
  11. Davenport, N. R., Bement, W. M. Cell repair: Revisiting the patch hypothesis. Communicative & Integrative Biology. 9 (6), 1253643 (2016).
  12. McNeil, P. L., et al. Patching plasma membrane disruptions with cytoplasmic membrane. Journal of Cell Science. 113 (11), 1891-1902 (2000).
  13. Terasaki, M., Miyake, K., McNeil, P. L. Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. Journal of Cell Biology. 139 (1), 63-74 (1997).
  14. Bi, G. Q., Alderton, J. M., Steinhardt, R. A. Calcium-regulated exocytosis is required for cell membrane resealing. Journal of Cell Biology. 131 (6 Pt. 2), 1747-1758 (1995).
  15. Tam, C., et al. Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. Journal of Cell Biology. 189 (6), 1027-1038 (2010).
  16. Rodriguez, A., et al. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. Journal of Cell Biology. 137 (1), 93-104 (1997).
  17. Reddy, A., Caler, E. V., Andrews, N. W. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell. 106 (2), 157-169 (2001).
  18. Jimenez, A. J., et al. ESCRT machinery is required for plasma membrane repair. Science. 343 (6174), 1247136 (2014).
  19. Pathak-Sharma, S., et al. High-Throughput Microplate-Based Assay to Monitor Plasma Membrane Wounding and Repair. Frontiers in Cellular and Infection Microbiology. 7, 305 (2017).
  20. Hamon, M. A., et al. Listeriolysin O: the Swiss army knife of Listeria. Trends in Microbiology. 20 (8), 360-368 (2012).
  21. Seveau, S. Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Subcellular Biochemistry. 80, 161-195 (2014).
  22. Osborne, S. E., Brumell, J. H. Listeriolysin O: from bazooka to Swiss army knife. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 372 (1726), (2017).
  23. Lukoyanova, N., Hoogenboom, B. W., Saibil, H. R. The membrane attack complex, perforin and cholesterol-dependent cytolysin superfamily of pore-forming proteins. Journal of Cell Science. 129 (11), 2125-2133 (2016).
  24. Tweten, R. K. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infection and Immunity. 73 (10), 6199-6209 (2005).
  25. Koster, S., et al. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nature Communications. 5, 3690 (2014).
  26. Duncan, J. L., Schlegel, R. Effect of streptolysin O on erythrocyte membranes, liposomes, and lipid dispersions. A protein-cholesterol interaction. Journal of Cell Biology. 67 (1), 160-174 (1975).
  27. Morgan, P. J., et al. Subunit organisation and symmetry of pore-forming, oligomeric pneumolysin. FEBS Letters. 371 (1), 77-80 (1995).
  28. Leung, C., et al. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. eLife. 3, (2014).
  29. Marchioretto, M., et al. What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins. Biophysical Chemistry. 182, 64-70 (2013).
  30. Palmer, M., et al. Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. European Molecular Biology Organization Journal. 17 (6), 1598-1605 (1998).
  31. Bavdek, A., et al. pH dependence of listeriolysin O aggregation and pore-forming ability. Federation of European Biochemical Society Journal. 279 (1), 126-141 (2012).
  32. Schuerch, D. W., Wilson-Kubalek, E. M., Tweten, R. K. Molecular basis of listeriolysin O pH dependence. Proceeding of the National Academy of Sciences of the United States of America. 102 (35), 12537-12542 (2005).
  33. Cassidy, S. K., O’Riordan, M. X. More than a pore: the cellular response to cholesterol-dependent cytolysins. Toxins (Basel). 5 (4), 618-636 (2013).
  34. Lam, J., et al. Host cell perforation by listeriolysin O (LLO) activates a Ca(2+)-dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes L. monocytogenes internalization independently of membrane resealing. Molecular Biology of the Cell. , (2017).
  35. Gekara, N. O., Weiss, S. Lipid rafts clustering and signalling by listeriolysin O. Biochemical Society Transactions. 32 (Pt 5), 712-714 (2004).
  36. Magassa, N., Chandrasekaran, S., Caparon, M. G. Streptococcus pyogenes cytolysin-mediated translocation does not require pore formation by streptolysin O. European Molecular Biology Organization Reports. 11 (5), 400-405 (2010).
  37. Baba, H., et al. Induction of gamma interferon and nitric oxide by truncated pneumolysin that lacks pore-forming activity. Infection and Immunity. 70 (1), 107-113 (2002).
  38. Carrero, J. A., Vivanco-Cid, H., Unanue, E. R. Listeriolysin o is strongly immunogenic independently of its cytotoxic activity. Public Library of Science One. 7 (3), e32310 (2012).
  39. Coconnier, M. H., et al. Listeriolysin O-induced stimulation of mucin exocytosis in polarized intestinal mucin-secreting cells: evidence for toxin recognition of membrane-associated lipids and subsequent toxin internalization through caveolae. Cell Microbiology. 2 (6), 487-504 (2000).
  40. Suzuki, T., et al. DNA staining for fluorescence and laser confocal microscopy. Journal of Histochemistry and Cytochemistry. 45 (1), 49-53 (1997).
  41. Bink, K., et al. TO-PRO-3 is an optimal fluorescent dye for nuclear counterstaining in dual-colour FISH on paraffin sections. Histochemistry and Cell Biology. 115 (4), 293-299 (2001).
  42. Zhang, J. H., Chung, T. D., Oldenburg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. Journal of Biomolecular Screening. 4 (2), 67-73 (1999).
  43. Birmingham, A., et al. Statistical methods for analysis of high-throughput RNA interference screens. Nature Methods. 6 (8), 569-575 (2009).
  44. Zhang, X. D. A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays. Genomics. 89 (4), 552-561 (2007).
  45. Zhang, X. D. A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays. Journal of Biomolecular Screening. 12 (5), 645-655 (2007).
  46. Idone, V., et al. Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. Journal of Cell Biology. 180 (5), 905-914 (2008).
  47. Davenport, N. R., et al. Membrane dynamics during cellular wound repair. Molecular Biology of the Cell. 27 (14), 2272-2285 (2016).
  48. Defour, A., Sreetama, S. C., Jaiswal, J. K. Imaging cell membrane injury and subcellular processes involved in repair. Journal of Visualized Experiments. (85), (2014).
  49. Lee, J. J. A., et al. Cell Membrane Repair Assay Using a Two-photon Laser Microscope. Journal of Visualized Experiments. (131), (2018).
  50. Weisleder, N., et al. Visualization of MG53-mediated cell membrane repair using in vivo and in vitro systems. Journal of Visualized Experiments. (52), (2011).
  51. Corrotte, M., et al. Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation. Traffic. 13 (3), 483-494 (2012).
  52. Kuismanen, E., Saraste, J. Low temperature-induced transport blocks as tools to manipulate membrane traffic. Methods in Cell Biology. 32, 257-274 (1989).
  53. Togo, T., et al. The mechanism of facilitated cell membrane resealing. Journal of Cell Science. 112, 719-731 (1999).
  54. Johnson, S. A., et al. Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles. Biochimica et Biophysica Acta. 1798 (7), 1427-1435 (2010).
  55. Lam, J. G. T., et al. Host cell perforation by listeriolysin O (LLO) activates a Ca(2+)-dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes Listeria monocytogenes internalization independently of membrane resealing. Molecular Biology of the Cell. 29 (3), 270-284 (2018).
check_url/it/58351?article_type=t

Play Video

Citazione di questo articolo
Lam, J. G., Song, C., Seveau, S. High-throughput Measurement of Plasma Membrane Resealing Efficiency in Mammalian Cells. J. Vis. Exp. (143), e58351, doi:10.3791/58351 (2019).

View Video