Summary

应用短暂的中脑动脉闭塞小鼠模型评价甘草提取物的神经保护作用

Published: December 09, 2018
doi:

Summary

在本研究中, 我们通过建立大脑中动脉闭塞 (mcao) 小鼠模型, 修改了现有的实验方法, 以获得更多的重现性结果。口服甘草和根状茎 (gr) 甲醇提取物 (grex), 脑卒中诱导后, 与未治疗对照组相比, 总梗死量显著降低。

Abstract

脑卒中后脑血流再灌注后的缺血导致神经细胞死亡和脑组织丢失。脑卒中最常用的动物模型是大脑中动脉闭塞 (mcao) 模型。以前的研究报告了不同的梗死大小, 即使在类似的 mcao 条件下使用相同的实验动物物种。因此, 我们开发了一种改进的实验方法来解决这种差异。小鼠接受 mcao 使用长丝作为遮挡材料, 以模拟人类中风条件和灯丝厚度进行优化, 以建立更可重现的梗死体积。脑卒中诱导后用甘草提取物处理的小鼠总梗死体积明显下降, 存活细胞数量相对于未治疗的对照组有所增加。该改进的实验方案成功地和可重现地证明了 grex 对缺血性脑卒中的有益作用。

Introduction

脑血流缺血再灌注引起的脑损伤导致神经细胞死亡和脑组织丢失。随着肥胖、高血压和糖尿病等代谢疾病的传播, 脑血管疾病的发病率不断上升, 这种类型的脑损伤继续增加.全世界老年中风患者的绝对人数急剧增加, 这些患者的医疗费用是一个主要的社会负担, 这些患者往往患有长期残疾。因此, 应尽可能减轻继发性残疾, 以减轻经济负担1,2

脑梗死最常用的啮齿类动物模型是大脑中动脉闭塞 (mcao) 模型, 其中 mca 被硅涂层手术缝合长丝封闭, 以阻断血液流动, 导致缺血性中风3,4. 使用灯丝作为闭塞材料, 可以通过控制腔内灯丝插入的持续时间来控制闭塞时间和持久性。

以往的研究表明, 即使使用相同的啮齿类动物 mcao 模型, 脑梗死的总量也因实验而异, 导致研究的重现性较低。为了提高重现性, 我们优化了实验中使用的细丝薄荷的厚度。脑缺血期和诱发梗死的初步研究结果表明, 缺血期超过 60分钟, 可以观察和量化受损脑组织的体积区域。

甘草, 又名甘草, 由甘草和葛根的干根和根状茎组成. 它已被用于中国和韩国传统医学的各种用途, 包括作为食品添加剂和药用5,6,7

在先前的一项研究8中, gr 甲醇提取物 (grex) 预处理显示出 mcao 小鼠的抗凋亡作用, 包括显著防止 b 细胞淋巴瘤 2 (bcl-2) 和 bcl 超大 (bcl-xl) 蛋白表达的降低。本研究通过评价传统 mcao 小鼠模型在确定 grex 在梗死后处理中的效率, 有效地降低了 mcao 所致脑损伤的梗死体积, 从而提高了该模型的重现性。

Protocol

所有涉及动物的程序都得到了釜山国立大学道德委员会的批准 (批准号码, pu-2016-1087)。图 1显示了这项研究的图形概述。 1. grex 的准备和管理 注: 本研究中使用的 gr 是从一家商业制药公司购买的。 将200克 gr 放入 2, 000 毫升甲醇中, 在室温 (25°c) 下孵育5天。 使用厚度为 0.26 mm、孔径为5μm 的滤纸对混合物进行过滤, 然后?…

Representative Results

在假操作的正常组, 没有观察到脑梗塞, 而在对照组, 观察到相对广泛的损伤区域。在 mcao 模型组给小鼠的 300 mg/kg grex 中, 损伤面积显著减少 (图 2)。 用 h & amp; e 或 cresyl 紫染色缺血性脑切片, 研究其组织学改变。h & amp; e 染色提供有关细胞10的结构信息和特定功能信息, 而 cresyl 紫色染色用…

Discussion

随着慢性高血压、糖尿病、高脂血症等代谢疾病的发病率不断上升, 脑卒中的主要危险因素, 脑卒中的预防和治疗已成为医学研究的一个重要领域12.13. 中风后语言和运动方面的缺陷与脑组织14的损伤程度密切相关, 导致患者及其家属的生活质量差.重要的是要使用一个适当的中风动物模型, 其中涉及相同的病理变化发生?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

不适用。

Materials

Glycyrrhizae Radix et Rhizoma Gwangmyoung Pharmaceuticals Co., Korea Glycyrrhizae Radix et Rhizoma
Qualitative filter paper Advantec Filter paper No. 2 Qualitative filter paper
Dimethyl sulfoxide (DMSO) Sigma D8418-250ML Dimethyl sulfoxide (DMSO)
Syringe filter (0.45 µm) Sigma CLS431220 Syringe filter (0.45 µm)
Stereo Microscope Leica M50 Stereo Microscope
Stereo Microscope Nikon SMZ745 Stereo Microscope
Laser Doppler Moor Instrument moorVMS-LDF Laser Doppler
Anesthesia Tabletop Bracket with N2O&O2 Flowmeter System Harvard Appratus 34-1352 Anesthesia Tabletop Bracket with N2O&O2 Flowmeter System
Homeothermic Monitoring System Harvard Appratus 55-7020 Homeothermic Monitoring System
Digital Camera Canon Eos-M2 Digital Camera
Cryostat Leica CM3050S Cryostat
Microscope Carl Zeiss Zeiss Axio Microscope
Data Analysis Systat Software Inc. SigmaPlot version 12 Data Analysis
Data Analysis NIH Image ImageJ Data Analysis
Mouse diet Doo Yeol Biotech Standard rodent chow Mouse diet
Isoflurane JOONGWAE A02104781 Isoflurane
Isoflurane TROIKAA ISOTROY 100 Isoflurane
Silk suture (4-0 Black silk)  AILEE SK47510 Silk suture (4-0 Black silk) 
Silk suture (3-0 White silk)  Baekjae 57 Silk suture (3-0 White silk) 
Nylon suture (8-0 monofilament)  AILEE NB825 Nylon suture (8-0 monofilament) 
2,3,5-triphenyltetrazolium chloride (TTC) Sigma T8877-25G 2,3,5-triphenyltetrazolium chloride (TTC)
Formalin (Formaldehyde solution) JUNSEI 69360-1263 20KG Formalin (Formaldehyde solution)
Hematoxylin (Harris Hematoxylin) YD Diagnostics EasyStain Hematoxylin (Harris Hematoxylin)
Eosin (1% Eosin Y Solution) MUTO PURE CHEMICALS 3200-2 Eosin (1% Eosin Y Solution)
Cresyl violet (acetate) Sigma C5042-10G Cresyl violet (acetate)
Paraformaldehyde  Sigma-Aldrich P6148-1KG Paraformaldehyde 
Sucrose JUNSEI 31365-0350 1KG Sucrose
Optimum cutting temperature (OCT) compound Scigen 4583 Optimum cutting temperature (OCT) compound
Disecting Knife Fine Science Tools 10055-12 Disecting Knife
#4 Forcep Fine Science Tools 11241-30 #4 Forcep
#5 Forcep Fine Science Tools 11254-20 #5 Forcep
#6 Forcep Fine Science Tools 11260-20 #6 Forcep
#7 Fine Forcep Fine Science Tools 11274-20 #7 Fine Forcep
Surgical Scissors Fine Science Tools 14001-12 Surgical Scissors
Extra Fine Bonn Scissors Fine Science Tools 14084-08 Extra Fine Bonn Scissors
Moria Pascheff-Wolff Spring Scissors Fine Science Tools 15371-92 Moria Pascheff-Wolff Spring Scissors
Vessel Dilating Forcep Fine Science Tools 18153-11 Vessel Dilating Forcep

Riferimenti

  1. Bejot, Y., Delpont, B., Giroud, M. Rising stroke incidence in young adults: more epidemiological evidence, more questions to be answered. Journal of the American Heart Association. 11 (5), (2016).
  2. Hadadha, M., Vakili, A., Bandegi, A. R. Effect of the inhibition of hydrogen sulfide synthesis on ischemic injury and oxidative stress biomarkers in a transient model of focal cerebral ischemia in rats. Journal of Stroke and Cerebrovascular Diseases. 24 (12), 2676-2684 (2015).
  3. Durukan, A., Tatlisumak, T. Animal models of ischemic stroke. Article in Handbook of Clinical Neurology. 92, 43-66 (2009).
  4. Kim, D. Animal Models of Stroke. Brain and Neurorehabilitation. 4 (1), 1-11 (2011).
  5. Rizzato, G., Scalabrin, E., Radaelli, M., Capodaglio, G., Piccolo, O. A new exploration of licorice metabolome. Food Chemistry. 221, 959-968 (2017).
  6. Zhu, Z., et al. Rapid determination of flavonoids in licorice and comparison of three licorice species. Journal of Separation Science. 39 (3), 473-482 (2016).
  7. Ota, M., Mikage, M., Cai, S. Q. Herbological study on the medicinal effects of roasted licorice and honey-roasted licorice. Yakushigaku Zasshi. 50 (1), 38-45 (2015).
  8. Lim, C., et al. Licorice pretreatment protects against brain damage induced by middle cerebral artery occlusion in mice. Journal of Medicinal Food. 21 (5), 474-480 (2018).
  9. Koizumi, J. Y., Nakazawa, T., Ooneda, G. Experimental studies of ischemic brain edema. Nosotchu. 8 (1), 1-8 (1986).
  10. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols. 2008, (2008).
  11. Zhu, Y., Liu, F., Zou, X., Torbey, M. Comparison of unbiased estimation of neuronal number in the rat hippocampus with different staining methods. Journal of Neuroscience Methods. 254, 73-79 (2005).
  12. Alberts, M. J., Ovbiagele, B. Current strategies for ischemic stroke prevention: role of multimodal combination therapies. Journal of Neurology. 254 (10), 1414-1426 (2007).
  13. Pinto, A., Tuttolomondo, A., Di Raimondo, D., Fernandez, P., Licata, G. Cerebrovascular risk factors and clinical classification of strokes. Seminars in Vascular Medicine. 4 (3), 287-303 (2004).
  14. Barlow, S. J. Identifying the brain regions associated with acute spasticity in patients diagnosed with an ischemic stroke. Somatosensory and Motor Research. 33 (2), 1-8 (2016).
  15. Roth, S., Liesz, A. Stroke research at the crossroads – where are we heading. Swiss Medical Weekly. 146, 14329 (2016).
  16. Feuerstein, G. Z., Wang, X. Animal models of stroke. Molecular Medicine Today. 6 (3), 133-135 (2000).
  17. Herson, P. S., Traystman, R. J. Animal models of stroke: translational potential at present and in 2050. Future Neurology. 9 (5), 541-551 (2014).
  18. Kumar, A., Gupta Aakriti, V. A review on animal models of stroke: an update. Brain Research Bulletin. 122, 35-44 (2016).
  19. O’Collins, V. E., Donnan, G. A., Howells, D. W. History of animal models of stroke. International Journal of Stroke. 6 (1), 77-78 (2011).
  20. Ji, S., et al. Bioactive constituents of Glycyrrhiza uralensis (licorice): discovery of the effective components of a traditional herbal medicine. Journal of Natural Products. 79 (2), 281-292 (2016).
  21. Yang, R., Wang, L. Q., Yuan, B. C., Liu, Y. The pharmacological activities of licorice. Planta Medica. 81 (18), 1654-1669 (2015).
  22. Yang, R., Yuan, B. C., Ma, Y. S., Zhou, S., Liu, Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharmaceutical Biology. 55 (1), 5-18 (2017).
check_url/it/58454?article_type=t

Play Video

Citazione di questo articolo
Lee, S., Lim, C., Lee, M., Kim, C., Kim, H., Lee, B., Cho, S. Assessing Neuroprotective Effects of Glycyrrhizae Radix et Rhizoma Extract Using a Transient Middle Cerebral Artery Occlusion Mouse Model. J. Vis. Exp. (142), e58454, doi:10.3791/58454 (2018).

View Video