Summary

利用先进的纺额圆盘全内反射荧光显微镜观察细胞粘附形成

Published: January 21, 2019
doi:

Summary

将提供一种先进的显微镜, 可对这两种情况、隔离的质膜和周围的细胞内体积进行快速和高分辨率的成像。将纺盘和总内部反射荧光显微镜集成到一个装置中, 可以在每个图像堆栈的高采集速率下进行实时成像实验。

Abstract

在活细胞中, 粘附形成等过程涉及质膜和细胞内部的广泛结构变化。为了可视化这些高度动态的事件, 结合了两种互补的光显微镜技术, 可以快速成像实时样品: 旋转盘显微镜 (sd), 用于快速和高分辨率的体积记录和全面的内部反射荧光 (tirf) 显微镜, 用于精确定位和可视化质膜。将展示一个全面、完整的成像方案, 用于指导样品制备、显微镜校准、图像形成和采集, 从而形成具有高时空分辨率的多色 sd-tirf 实时成像系列。生成多维实时成像数据集所需的所有图像后处理步骤, 即各个通道的注册和组合,在开源软件 imagej 的自写宏中提供。在粘附配合物的萌发和成熟过程中, 荧光蛋白的成像, 以及肌动蛋白细胞骨架网络的形成, 被用作这一新方法的原理证明。高分辨率三维显微镜和 tirf 的结合提供了对细胞环境中这些复杂过程的详细描述, 同时, 精确定位了与膜相关的分子。信噪比。

Introduction

我们的时代, 光显微镜技术提供了高/超分辨率成像的固定和活的标本是迅速发展。超分辨率技术, 如受激发射耗尽 (sted)、结构化照明显微镜 (sim) 和光激活定位显微镜 (palm) 或直接随机光学重建显微镜 (storm), 分别是商业上可获得的, 并使成像的亚细胞结构显示的细节几乎在分子规模 1,2,3, 4, 5,6。然而, 这些方法在现场成像实验中的适用性仍然有限, 在现场成像实验中, 需要以每秒多个帧的采集速度对大容量进行可视化。通过质膜调节的高度动态过程的品种,内/外渗、粘附、迁移或信号, 在大细胞内高速发生。最近, 为了填补这一空白, 提出了一种集成的显微镜技术, 称为旋转磁盘 tirf (sd-tirf)7。具体而言, tirf 显微镜允许专门分离和定位质膜8,9, 而 sd 显微镜是最敏感和快速的实时成像技术之一, 用于可视化和跟踪细胞质中的亚细胞细胞器10,11。在过去的 12,13, 这两种成像技术的组合已经实现, 然而, 这里介绍的显微镜 (图 1) 终于符合执行实时成像 sd-tirf 实验的标准以每秒3帧的速度完成上述过程。由于这种显微镜是商业上可用的, 这份手稿的目标是详细描述, 并提供开源工具和协议的图像采集, 注册, 和可视化与 sd-tirf 显微镜。

该设置基于通过独立端口连接到两个扫描单元的倒置显微镜–左端口连接到 sd 单元, 后端口连接到 tirf 和光激活漂白实验的扫描仪单元。可用于激发的激光器 (40\ 445/488/48\ 56n–)。对于荧光信号的激发和检测, 分别采用了 100 xn1.45 油或60xéna1.49 油 tirf 目标。发射的光由双色反射镜 (561 纳米长通或561纳米长通) 分割, 并由放置在两个 em-ccd 凸轮前的各种带通滤波器 (55 纳米宽, 中心在561纳米, 54 纳米宽分别以609纳米为中心, 用于绿色和红色荧光)时代。请注意, zobiak 等人列出了有关设置的更多技术细节.7. 在 tirf 配置中, sd 单元在大约0.5 秒内移出光路, 以便可以使用相同的两个摄像机进行检测, 从而与过去13报告的大约1秒相比, 可以在两种成像模式之间更快地切换./c2 >。此功能可实现双通道同步采集, 因此可以以以前无与伦比的速度和精度执行4个通道 sd-tirf 成像。此外, sd 和 tirf 图像之间的对齐是不必要的。但是, 在开始实验之前, 必须检查两个摄像机之间的图像对齐情况, 并在必要时进行更正。在下面的协议中, 在自写 imagej 宏中实现了注册更正例程。此外, 该宏的主要目的是允许同时显示 sd 和 tirf 数据集, 尽管它们的维度不同。采集软件本身并没有提供这些功能。

Protocol

1. 细胞的制备 实验前两天, 种子 3 * 105 h秒钟或 NIH3T3 细胞在2毫升的全生长培养基每口6井细胞培养板。确保在整个协议中, 细胞在层流引擎盖中处理。 在实验前一天, 根据制造商的建议或经验确定的协议准备转染试剂,例如: 在总共200μl 还原血清中稀释1微克的 rfp-生命和1μg 的 yfp-vinculin。短暂的转染试剂涡旋, 再向 200μl dna 中加入4μl 和涡旋。在室温下将转染混合?…

Representative Results

为了显示 sd-tirf 成像的潜力, 我们开发了一种检测方法, 该方法应揭示细胞基质粘附物的时空组织及其在细胞粘附过程中与细胞骨架的相互作用。因此, 粘附的 hea 或 NIH3T3 细胞转染 yfp-vinculin 和 rfp-liveact 18-24, 胰蛋白酶化, 并播种到纤维镀膜玻璃底部的盘子。这些细胞系的选择是由于它们在实时成像实验中具有明显的细胞骨架和更高的鲁棒性, 而不是原代细胞。这些可能经不?…

Discussion

本文首次成功地实现了 sd 和 tirf 显微镜, 其配置适合进行活细胞成像实验,3个不同阶段每分钟 2个 sd-tirf 图像堆栈的高采集率。位置, 相当于总共168帧 (约3帧/秒), 被收购。前面描述的少数 sd-tirf 显微镜, 主要是缺乏足够高的成像速度, 无法在3d 中跟踪细胞过程, 在3d 中, 每个图像堆栈的时间分辨率通常小于 2 s。该装置可实现高达0.78 图像堆栈每秒, …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们非常感谢大学医学中心汉堡-埃彭多夫的科学界为我们提供样本评估。也就是说, 我们感谢 sabine windhorst 的 NIH3T3 细胞, 感谢 andrea mordhorst 的 yfp-vinculin 和 rfp-liffolact 的马伦·鲁道夫。

Materials

Microscope and accessories
SD-TIRF microscope Visitron Systems
Ti with perfect focus system Nikon Inverted microscope stand
CSU-W1 T2 Yokogawa Spinning disk unit in dual-camera configuration
iLAS2  Roper Scientific TIRF/FRAP scanner
Evolve  Photometrix EM-CCD cameras
PiezoZ stage Ludl Electronic Products Motorized Z stage
Bioprecision2 XY stage Ludl Electronic Products Motorized XY stage
Stage top incubation chamber Okolab Bold Line Temperature, CO2 and humidity supply
Cell culture
HeLa cervical cancer cells DSMZ ACC-57
NIH3T3 fibroblasts DSMZ ACC-59
Dulbecco's phosphate buffered saline (PBS) Gibco 14190144
Trypsin-EDTA 0.05% Gibco 25300054
Dulbecco's Modified Eagle Medium + GlutaMAX-I (DMEM) Gibco 31966-021
OptiMEM Gibco 31985070 Reduced serum medium
Fetal calf serum (FCS) Gibco 10500064
Penicillin/Streptomycin (PenStrep) Gibco 15140148
Full growth medium (DMEM supplemented with 10% FCS and 1% PenStrep)
TurboFect ThermoFisher Scientific R0531 Transfection reagent
Ascorbic acid (AA) Sigma A544-25G
6-well cell culture plate Sarstedt 83.392
Glass bottom dishes MatTek P35G-1.5-10-C 35mm, 0.17mm glass coverslip
Fibronectin, bovine plasma ThermoFisher Scientific 33010018
Neubauer improved chamber VWR 631-0696
TetraSpeck beads ThermoFisher Scientific T7279
Plasmids
RFP-Lifeact Maren Rudolph, Institute of Medical Microbiology, University Medical Center Hamburg Eppendorf, Germany
YFP-Vinculin Andrea Mordhorst, Institute of Medical Microbiology, University Medical Center Hamburg Eppendorf, Germany
Software and plugins
VisiView Visitron Systems Version 3
ImageJ Version 1.52c
Turboreg plugin http://bigwww.epfl.ch/thevenaz/turboreg/
Macro "SD-TIRF_helper_JoVE.ijm" this publication https://github.com/bzobiak/ImageJ
Volocity PerkinElmer Version 6.2.2

Riferimenti

  1. Hell, S. W., Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters. 19 (11), 780 (1994).
  2. Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy. 198 (2), 82-87 (2000).
  3. Betzig, E., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313 (5793), 1642-1645 (2006).
  4. Hess, S. T., Girirajan, T. P. K., Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal. 91 (11), 4258-4272 (2006).
  5. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods. 3 (10), 793-796 (2006).
  6. van de Linde, S., et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature protocols. 6 (7), 991-1009 (2011).
  7. Zobiak, B., Failla, A. V. Advanced spinning disk-TIRF microscopy for faster imaging of the cell interior and the plasma membrane. Journal of Microscopy. 269 (3), 282-290 (2018).
  8. Mattheyses, A. L., Simon, S. M., Rappoport, J. Z. Imaging with total internal reflection fluorescence microscopy for the cell biologist. Journal of Cell Science. 123 (21), 3621-3628 (2010).
  9. Burchfield, J. G., Lopez, J. A., Vallotton, P., William, E. Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy. Traffic. 11 (4), 429-439 (2010).
  10. Oreopoulos, J., Berman, R., Browne, M. Spinning-disk confocal microscopy. present technology and future trends. Methods in Cell Biology. 123, 153-175 (2014).
  11. Murray, J. M., Appleton, P. L., Swedlow, J. R., Waters, J. C. Evaluating performance in three-dimensional fluorescence microscopy. Journal of Microscopy. 228 (3), 390-405 (2007).
  12. Trache, A., Lim, S. -. M. Integrated microscopy for real-time imaging of mechanotransduction studies in live cells. Journal of Biomedical Optics. 14 (3), 034024 (2009).
  13. Stehbens, S., Pemble, H., Murrow, L., Wittmann, T. Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods in Enzymology. , 293-313 (2012).
  14. Waldchen, S., Lehmann, J., Klein, T., Van De Linde, S., Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Scientific Reports. 5, 1-12 (2015).
  15. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  16. Thévenaz, P., Ruttimann, U. E., Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing. 7 (1), 27-41 (1998).
  17. Partridge, M. A. Initiation of attachment and generation of mature focal adhesions by integrin-containing filopodia in cell spreading. Molecular Biology of the Cell. 17 (10), (2006).
  18. Dubin-Thaler, B. J., Giannone, G., Döbereiner, H. G., Sheetz, M. P. Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs. Biophysical Journal. 86 (3), 1794-1806 (2004).
  19. Choi, C. K., Vicente-Manzanares, M., Zareno, J., Whitmore, L. A., Mogilner, A., Horwitz, A. R. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nature Cell Biology. 10 (9), 1039-1050 (2008).
  20. Bachir, A. I., Zareno, J., Moissoglu, K., Plow, E. F., Gratton, E., Horwitz, A. R. Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions. Current Biology. 24 (16), 1845-1853 (2014).
  21. Sun, Z., Guo, S. S., Fässler, R. Integrin-mediated mechanotransduction. Journal of Cell Biology. 215 (4), 445-456 (2016).
  22. Shao, L., Kner, P., Rego, E. H., Gustafsson, M. G. L. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods. 8 (12), 1044-1046 (2011).
  23. Chen, B. -. C., et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science. 346 (6208), 1257998-1257998 (2014).
  24. Fu, Y., Winter, P. W., Rojas, R., Wang, V., McAuliffe, M., Patterson, G. H. Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching. Proceedings of the National Academy of Sciences. 113 (16), 4368-4373 (2016).
  25. Boulanger, J., et al. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging. Proceedings of the National Academy of Sciences. 111 (48), 17164-17169 (2014).
check_url/it/58756?article_type=t

Play Video

Citazione di questo articolo
Zobiak, B., Failla, A. V. Visualizing Adhesion Formation in Cells by Means of Advanced Spinning Disk-Total Internal Reflection Fluorescence Microscopy. J. Vis. Exp. (143), e58756, doi:10.3791/58756 (2019).

View Video