Summary

Mikromanipulation von zirkulierenden Tumorzellen für die nachgelagerte Molekulare Analyse und die metastasierende Potenzialbewertung

Published: May 14, 2019
doi:

Summary

Hier stellen wir einen integrierten Workflow vor, um phänotypische und molekulare Merkmale zu identifizieren, die zirkulierende Tumorzellen (CTCs) charakterisieren. Wir kombinieren Live-Immunfärmonierung und robotische Mikromanipulation einzelner und gruppierter CTCs mit einzelnen zellbasierten Techniken zur nachgelagerten Analyse und Bewertung der Metastasisis-Sägefähigkeit.

Abstract

Die durch Blutung übertragene Metastasen sind für die meisten krebsbedingten Todesfälle verantwortlich und beinhalten zirkulierende Tumorzellen (CTCs), die erfolgreich bei der Etablierung neuer Tumoren an entfernten Standorten sind. Die CTCs finden sich im Blutkreislauf von Patienten als einzelne Zellen (einzelne CTCs) oder als multizelluläre Aggregate (CTC-Cluster und CTC-weiße Blutzellencluster), wobei letztere eine höhere Metastatikfähigkeit aufweisen. Über die Aufzählung hinaus ist eine phänotypische und molekulare Analyse außerordentlich wichtig, um die CTC-Biologie zu zerlegen und umsetzbare Schwachstellen zu identifizieren. Hier finden Sie eine detaillierte Beschreibung eines Workflows, der die CTC-Immunfärbung und Mikromanipulation, die ex vivo-Kultur zur Beurteilung der Proliferations-und Überlebensfähigkeiten einzelner Zellen und in vivo-Metastasen-Formations-Assays umfasst. Darüber hinaus stellen wir ein Protokoll zur Verfügung, um die Trennung von CTC-Clustern in einzelne Zellen und die Untersuchung der Heterogenität innerhalb des Clusters zu erreichen. Mit diesen Ansätzen quantifizieren wir beispielsweise das Überleben und das Proliferationspotenzial einzelner CTCs und einzelner Zellen innerhalb von TCC-Clustern genau, was uns zu der Beobachtung führt, dass Zellen innerhalb von Clustern ein besseres Überleben und eine bessere Verbreitung in der Ex-Cluster aufweisen. vivo-Kulturen im Vergleich zu einzelnen CTCs. Insgesamt bietet unser Workflow eine Plattform, um die Eigenschaften von CTCs auf der Ebene der einzelnen Zellen zu zerlegen, um metastasisrelevante Wege zu identifizieren und die CTC-Biologie besser zu verstehen.

Introduction

Die klinische Manifestation von Metastasen in entfernten Organen stellt die letzte Stufe des Fortschritts an Krebs dar und macht mehr als 90% der krebserregenden Todesfälle aus. Der Übergang von lokalisierter zu metastasiger Krankheit ist ein mehrstufiger Prozess, der oft durch zirkulierende Tumorzellen (CTCs)2,3,4vermitteltwird. Diese Zellen werden aus dem Primärtumor in die Blutzirkulation vergossen und in entfernte Organe transportiert, wo sie metastasierende Läsionen5,6ausstoßen und herstellen können. Obwohl feste Tumoren eine relativ hohe Anzahl von CTCs freisetzen können, sind die meisten CTCs dazu bestimmt, zu sterben, aufgrund hoher Scherkräfte im Umlauf, anoikis-vermittelter Zelltod, Immunangriffen oder eingeschränkter Fähigkeiten, sich an eine fremde Mikroumgebungzuanpassen 7. Daher ist es von entscheidender Bedeutung, Werkzeuge zu entwickeln, die die Trennung der molekularen Merkmale der CTCs ermöglichen, die mit Metastasisis-Säen-Fähigkeit ausgestattet sind. Neuere präklinische und klinische Studien deuten darauf hin,dass das Vorhandensein und die Menge einzelner CTCs und CTC-Cluster mit einem schlechteren Ergebnis bei Patientenmitverschiedenen Arten von soliden Tumoren verbunden ist 8,9,10 , 11 , 12 , 13 , 14 . CTC-Cluster sind Gruppen von zwei oder mehr CTCs, die während des Umlaufs miteinander verbunden sind und bei der Bildung von Metastasen effizienter sind als einzelne CTCs3,15,16. Zellen innerhalb eines Clusters halten eine starke Zellzellhaftung durch Desmosomen und Fesseln, die helfen können, Anoikis 17,18zu überwinden. Vor kurzem haben wir festgestellt, dass die Clusterbildung von CTCs mit der Hypomethylation von Bindungsstellen für Stemis-und Proliferationsbedingte Transkriptionsfaktoren verbunden ist, was zu einer erhöhten Fähigkeitführt, Metastasen 19 erfolgreich zu initiieren. Die CTC-Cluster-Dissoziation führt zu einer Umgestaltung der wichtigsten Bindungsstellen und damit zur Unterdrückung ihres metastasierenden Potenzials19. Zusätzlich zu den Clustern von Krebszellen können CTCs auch mit der weißen Blutkörperchen (meist Neutrophilen) assoziiert werden, um einen hohen Proliferationsgrad im Kreislaufzu erhalten und ihre metastasierende Fähigkeit zu erhöhen 20. Die Biologie der CTCs wird jedoch nur teilweise verstanden und es bleiben einige Fragen offen, darunter die zugrunde liegenden molekularen Merkmale und Schwachstellen einzelner und zusammengestellter Zellen.

In den letzten Jahren wurden mehrere Strategien entwickelt, die zellflächliche Ausdrucksmuster sowie physikalische Eigenschaften von CTCs für ihre Isolation21,22,23,24ausnutzen. 25. Antigen-abhängige Isolationsmethoden basieren meist auf der Expression der Zelloberfläche Epithelial Cell Adquil on Molecule (EpCAM)26. Die am häufigsten verwendete und (derzeit) einzige von der FDA zugelassene Plattform für CTC-Aufzählung ist das CellSucher-System, das auf einem zweistufigen Verfahren zur Isolierung von CTCs21basiert. Im ersten Schritt werden Plasmakomponenten durch Zentrifugation entfernt, während CTCs mit magnetischen Ferrofluiden erfasst werden, die mit Anti-PCAM-Antikörpern gekoppelt sind. Im zweiten Schritt wird die CTC-angereicherte Lösung für nukleare (DAPI-positive) Zellen gebeizt, die Zytokeratin (CK)8,18,19ausdrücken, während weiße Blutkörperchen (WBCs) mit Hilfe der Pen-Leukozyten-Marker CD45. Schließlich werden die gefangenen Zellen auf einer integrierten Screening-Plattform platziert und CTCs werden durch den Ausdruck von EpCAM, CKs und DAPI identifiziert, während sie für CD45 negativ sind. Obwohl dies als der Goldstandard für CTC-Aufzählung angesehen wird, ist die nachgelagerte molekulare Analyse mit dieser Technologie aufgrund der inhärenten Einschränkungen in der CTC-Rettung eine Herausforderung. Darüber hinaus kann CellSearch aufgrund seines Isolationsverfahrens die Anreicherung von CTCs mit höheren EpCAM-Werten im Vergleich zu CTCs mit niedrigerem EpCAM-Ausdruck begünstigen, was zum Beispiel auf die Heterogenität von Krebs oder die Downregulation von Epithelmarkern zurückzuführen ist. 28,29. Um diese Grenzen zu überwinden, haben sich antigen-unabhängige Technologien zur Bereicherung von CTCs herausgebildet. Zum Beispiel integriert der CTC-iChip die hydrodynamische Trennung von nukleaten Zellen, einschließlich CTCs und WBCs von den verbleibenden Blutbestandteilen, gefolgt von einer immunomagnetischen Erschöpfung von antikörpergetaggten WBCs, die die Reinigung von nicht getaggten und lebensfähigen CTCs in Lösung25. Darüber hinaus führte die Tatsache, dass die meisten CTCs etwas größer sind als rote Blutkörperchen (RBCs) oder WBCs, zur Entwicklung von standardisierten CTC-Anreicherungstechnologien 23, 30 ( z.B. das Parsortix-System (ANGLE)), das eine Die mikrofluidi-basierte Technologie, die einen Verengungskanal über die Trennkassette umfasst, führt die Zellen zu einem Endraum von 10, 8, 6,5 oder 4,5 μm (je nach Erwartungsdurchmesser der Zielkrebszellen sind unterschiedliche Größen verfügbar). Die meisten Blutkörperchen durchdringen den schmalen Spalt, während die CTCs aufgrund ihrer Größe (aber auch aufgrund ihrer geringeren Verformbarkeit) in die Falle geraten und deshalb in der Kassette aufbewahrt werden. Die Umkehrung der Strömungsrichtung ermöglicht die Freisetzung von gefangenen CTCs, die sich in einem lebensfähigen Zustand befinden und für die nachgelagerte Analyse geeignet sind. Unabhängig vom gewählten Protokoll für die CTC-Isolierung ergeben jedoch immer noch typische Verfahren nach der Anreicherung KZKCs, die mit einer relativ kleinen Anzahl von RBCs und WBCs vermischt werden, was die Analyse von reinen Einzel-oder MassenCTCs schwierig macht. Um dieses Problem anzugehen, haben wir einen Workflow etabliert, der TCC-Manipulationen ohne mögliche Voreingenommenheit durch Blutzellenverunreinigungen ermöglicht. Die Zugabe von Immunfärbung im Vorfeld, mit variablen Antikörper-Kombinationen, unterscheidet CTCs von Blutkörperchen und ermöglicht sogar, CTC-Untergruppen mit unterschiedlichen Oberflächenmarker-Expressionsprofilen zu identifizieren. Dieses hochgradig anpassbare Verfahren kann dann mit spezifischen nachgelagerten Anwendungen weiter kombiniert werden.

Hier beschreiben wir einen Workflow, der von einem CTC-angereicherten Produkt ausgeht (das mit jeder beliebigen CTC-Anreicherungstechnologie gewonnen wird) und mehrere Ansätze kombiniert, um Einblicke in die CTC-Biologie bei Einzellen-Auflösung zu gewinnen. Kurz gesagt, unser Workflow ermöglicht die Identifizierung von einzelnen CTCs, CTC-Clustern und CTC-WBC-Clustern durch Live-Immunfärbung, gefolgt von Einzeller-Mikromanipulation und nachgelagerter Analyse mit Ex-vivo-Kulturierungsprotokollen, Einzelzelle Sequenzierung, und in vivo metastasis Assays.

Protocol

Alle Eingriffe, bei denen es um Blutproben von Patienten ging, wurden nach untermächtigter Einwilligung der Teilnehmer durchgeführt. Die Verfahren wurden nach den Protokollen EKNZ BASEC 2016-00067 und EK 321/10 durchgeführt, die vom Ethik-und Institutionellen Prüfungsausschuss (Ethikkomitee Nordwest-/Zentralschweiz [EKNZ]) und gemäß der Deklaration von Helsinki genehmigt wurden. Alle Verfahren, die Tiere betreffen, wurden in Übereinstimmung mit den institutionellen und kantonalen Richtl…

Representative Results

Der vorgestellte Workflow ermöglicht die Erstellung einzelner CTCs, entweder von einzelnen CTCs oder getrennt von CTC-Clustern. CTCs von Patienten oder tumortragenden Mäusen werden mit den verfügbaren CTC-Anreicherungsmethoden aus Vollblut angereichert und dann mit Antikörpern gegen krebserregende Marker (z.B. EpCAM, grün) und WBC-spezifische Marker (z.B. CD45, rot) (Abbildung 1A) gebeizt. ). Das gefärbte CTC-Produkt wird dann in die Mikromanipulationss…

Discussion

Die molekulare Charakterisierung der CTCs verspricht, unser Verständnis des metastasierenden Prozesses zu verbessern und die Entwicklung neuer Anti-Metasten-Therapien zu leiten. Hier finden Sie eine detaillierte Beschreibung jener Protokolle, die die CTC-Mikromanipulation und die nachgelagerte Analyse ermöglichen, einschließlich der einzelnen zellbasierten Funktionsuntersuchungen, der Genexpressionsanalyse und der vivo-Transplantation für metastasierendes Potenzial. Bewertung20.

<…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Wir bedanken uns bei allen Patienten, die Blut für unsere Studie gespendet haben, sowie bei allen beteiligten Klinikern und Studienpflegern. Wir danken Jens Eberhardt, Uwe Birke und Dr. Katharina Uhlig von der ALS Automated Lab solutions GmbH für die kontinuierliche Unterstützung. Wir bedanken uns bei allen Mitgliedern des Acetto Labors für Feedback und Gespräche. Die Forschung im Acetot-Labor wird unterstützt vom Europäischen Forschungsrat, der Europäischen Union, der Schweizerischen Nationalstiftung, der Schweizerischen Krebsliga, der Basler Krebsliga, den beiden Kantonen Basel durch die ETH Zürich und der Universität Basel.

Materials

Anti-human EpCAM-AF488 Cell Signaling Technology CST5198 clone: VU1D9
1X DPBS Invitrogen 14190169 no calcium, no magnisium
6-wells Ultra-low attachment plate Corning 3471
Anti-human CD45-BV605 Biolegend 304041 clone: HI30
Anti-human EGFR-FITC  GeneTex GTX11400 clone: ICR10
Anti-human HER2-AF488  Biolegend 324410 clone: 24D2
Anti-mouse CD45-BV605 Biolegend 103139 clone: 30-F11
BD Vacutainer K2EDTA BD 366643 for human blood collection
Cell Celector ALS CC1001 core unit 
CellD software ALS version 3.0
Cultrex PathClear Reduced Growth Factor BME, Type 2 R&D Systems 3533-005-02
Micro tube 1.3 mL K3EDTA Sarstedt 41.3395.005 for mouse blood collection
PCR tubes Corning PCR-02-L-C
RLT Plus Quiagen 1053393
SUPERase  In RNase Inhibitor Thermo Fisher AM2696  1 U/µL 

Riferimenti

  1. Talmadge, J. E., Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Ricerca sul cancro. 70 (14), 5649-5669 (2010).
  2. Lambert, A. W., Pattabiraman, D. R., Weinberg, R. A. Emerging Biological Principles of Metastasis. Cell. 168 (4), 670-691 (2017).
  3. Aceto, N., Toner, M., Maheswaran, S., Haber, D. A. En Route to Metastasis: Circulating Tumor Cell Clusters and Epithelial-to-Mesenchymal Transition. Trends in Cancer. 1 (1), 44-52 (2015).
  4. Hong, Y., Fang, F., Zhang, Q. Circulating tumor cell clusters: What we know and what we expect (Review). International Journal of Oncology. 49 (6), 2206-2216 (2016).
  5. Nguyen, D. X., Bos, P. D., Massague, J. Metastasis: from dissemination to organ-specific colonization. Nature Review Cancer. 9 (4), 274-284 (2009).
  6. Valastyan, S., Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell. 147 (2), 275-292 (2011).
  7. Pantel, K., Speicher, M. R. The biology of circulating tumor cells. Oncogene. 35 (10), 1216-1224 (2016).
  8. Hou, J. M., et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. Journal of Clinical Oncology. 30 (5), 525-532 (2012).
  9. Long, E., et al. High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness. Cancer Medicine. 5 (6), 1022-1030 (2016).
  10. Wang, C., et al. Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Research and Treatment. 161 (1), 83-94 (2017).
  11. Mu, Z., et al. Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer. Breast Cancer Research and Treatment. 154 (3), 563-571 (2015).
  12. Zhang, D., et al. Circulating tumor microemboli (CTM) and vimentin+ circulating tumor cells (CTCs) detected by a size-based platform predict worse prognosis in advanced colorectal cancer patients during chemotherapy. Cancer Cell International. 17, 6 (2017).
  13. Zheng, X., et al. Detection of Circulating Tumor Cells and Circulating Tumor Microemboli in Gastric Cancer. Translational Oncology. 10 (3), 431-441 (2017).
  14. Chang, M. C., et al. Clinical Significance of Circulating Tumor Microemboli as a Prognostic Marker in Patients with Pancreatic Ductal Adenocarcinoma. Clinical Chemistry. 62 (3), 505-513 (2016).
  15. Aceto, N., et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 158 (5), 1110-1122 (2014).
  16. Cheung, K. J., et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proceedings of the National Academy of Sciences of the United States of America. 113 (7), E854-E863 (2016).
  17. Giuliano, M., et al. Perspective on Circulating Tumor Cell Clusters: Why It Takes a Village to Metastasize. Ricerca sul cancro. 78 (4), 845-852 (2018).
  18. Gkountela, S., Aceto, N. Stem-like features of cancer cells on their way to metastasis. Biology Direct. 11, 33 (2016).
  19. Gkountela, S., et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell. 176 (1-2), 98-112 (2019).
  20. Szczerba, B. M., et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. , (2019).
  21. Beije, N., Jager, A., Sleijfer, S. Circulating tumor cell enumeration by the CellSearch system: the clinician’s guide to breast cancer treatment?. Cancer Treatment Reviews. 41 (2), 144-150 (2015).
  22. Sarioglu, A. F., et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nature Methods. 12 (7), 685-691 (2015).
  23. Xu, L., et al. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System. PLoS One. 10 (9), e0138032 (2015).
  24. Stott, S. L., et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America. 107 (43), 18392-18397 (2010).
  25. Ozkumur, E., et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Science Translational Medicine. 5 (179), 179ra147 (2013).
  26. Went, P. T., et al. Frequent EpCam protein expression in human carcinomas. Human Pathology. 35 (1), 122-128 (2004).
  27. Soysal, S. D., et al. EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2(+), basal-like, and HER2 intrinsic subtypes of breast cancer. British Journal of Cancer. 108 (7), 1480-1487 (2013).
  28. Yu, M., et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 339 (6119), 580-584 (2013).
  29. Mani, S. A., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133 (4), 704-715 (2008).
  30. Zheng, S., et al. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. Journal of Chromatography A. 1162 (2), 154-161 (2007).
  31. Yu, M., et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 345 (6193), 216-220 (2014).
check_url/it/59677?article_type=t

Play Video

Citazione di questo articolo
Donato, C., Szczerba, B. M., Scheidmann, M. C., Castro-Giner, F., Aceto, N. Micromanipulation of Circulating Tumor Cells for Downstream Molecular Analysis and Metastatic Potential Assessment. J. Vis. Exp. (147), e59677, doi:10.3791/59677 (2019).

View Video