Summary

活性溅射沉积的氧化氮薄膜:氧气流速效应

Published: September 28, 2019
doi:

Summary

在这里,我们提出了一个协议,通过反应溅射以不同的氧气流速沉积氧化氮薄膜,作为在perovskite太阳能电池中的电子传输层。

Abstract

反应溅射是一种多功能技术,用于形成具有极佳均匀性的紧凑型薄膜。此外,它还便于控制沉积参数,如气体流速,从而改变成分,从而改变薄膜所需的特性。在本报告中,反应溅射用于沉积氧化氮薄膜。镍靶作为金属源,不同的氧气流速沉积氧化氮薄膜。氧气流量从3sccm变为10 sccm。沉积在低氧流速率下的薄膜具有较高的导电性,当用作电子传输层时,可提供更好的超氧化物太阳能电池。

Introduction

溅射技术被广泛用于沉积高质量的薄膜。其主要应用在半导体行业,虽然它也用于表面涂层,以改善机械性能,和反射层1。溅射的主要优点是有可能将不同的材料沉积在不同的基材上;良好的可重复性和对沉积参数的控制。溅射技术允许均匀薄膜沉积,与化学气相沉积 (CVD)、分子束外延 (MBE) 和原子层沉积 (ALD) 等其他沉积方法相比,在大面积且成本低。12.通常,由溅射沉积的半导体薄膜是无定形或多晶的,然而,有一些关于溅射3、4的外延生长的报告。然而,溅射过程非常复杂,参数范围宽5,因此,为了实现高质量的薄膜,必须对每种材料的过程和参数优化有良好的理解。

有几篇文章报道了氧化氮薄膜通过溅射沉积,以及氮化物6和碳化铀7。在Nb氧化物中,五氧化二氮(Nb2O5)是一种透明、空气稳定、水溶性的材料,具有广泛的多态性。它是一种 n 型半导体,带隙值范围从 3.1 到 5.3 eV,使这些氧化物具有广泛的应用范围8、9、10、11、12、13 1415,16,17,18,19。Nb2O5作为一种有前途的材料,因其具有可比的电子注入效率和与二氧化钛 (TiO2)相比的化学稳定性,因此备受关注。此外,Nb2O5的带隙可以改善14单元的开路电压(Voc)。

在这项工作中,Nb2O5在不同的氧气流速下通过反应溅射沉积。在低氧流率下,薄膜的电导率增加,而不使用掺杂物,从而在系统内引入杂质。这些薄膜被用作在perovskite太阳能电池中的电子传输层,提高这些电池的性能。结果发现,减少氧气量会导致氧空位的形成,从而增加薄膜的导电性,使太阳能电池具有更高的效率。

Protocol

1. 蚀刻和清洁基板 使用玻璃切割系统,形成 2.5 x 2.5 厘米的氟化物薄氧化物 (FTO) 基板。 用热胶带保护基板表面的一部分,使一侧露出 0.5 厘米。 将少量锌粉(足以覆盖待蚀区域)沉积在暴露的 FTO 顶部,并缓慢地将浓缩盐酸 (HCl) 滴在锌粉上,直到所有锌粉被反应消耗。紧接着,用去离子 (DI) 水冲洗基板。注意:大量氢气是由锌和HCl反应产生的。 取出胶?…

Representative Results

在溅射系统中,沉积速率受氧流速的影响很大。当氧气流量增加时,沉积速率降低。考虑到所用目标区域的现状和等离子体功率,从3至4sccm的沉积速率有表达性下降,然而,当氧气从4个增加到10sccm时,它变得不那么明显。在3 sccm的体制中,沉积速率为1.1 nm/s,在10 sccm中突然减小到0.1纳米/s,如图1所示。 形成的氧化氮相取决于氧气流速。对于小于3 sccm 的…

Discussion

在这项工作中制备的氧化氮薄膜被用作在perovskite太阳能电池中的电子传输层。电子传输层最重要的特征是防止重组、堵塞孔和有效地传输电子。

在这方面,使用反应溅射技术是有利的,因为它产生密集和紧凑的薄膜。此外,如前所述,与溶胶、阳极氧化、热液和化学气相沉积合成方法14、21、22相比,活性溅射是最适合沉积大面积<s…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了圣保罗埃斯塔多·埃斯奎萨基金会的支持,《圣保罗中心》(CDMF-FAPESP No 2013/07296-2, 2017/11072-3,2013/09963-6 和 2017/18916-2)。特别感谢Máximo Siu Li教授的PL测量。

Materials

2-propanol Merck 67-63-0 solvent with maximum of 0.005% H2O
4-tert-butylpyridine Sigma Aldrich 3978-81-2 chemical with 96% purity
acetonitrile Sigma Aldrich 75-05-8 anhydrous solvent , 99.8% purity
bis(trifluoromethane)sulfonimide lithium salt Sigma Aldrich 90076-65-6 chemical with ≥99.95% purity
chlorobenzene Sigma Aldrich 108-90-7 anhydrous solvent , 99.8% purity
ethanol Sigma Aldrich 200-578-6 solvent
Fluorine doped tin oxide (SnO2:F) glass substrate Solaronix TCO22-7/LI substrate to deposit films
Kaptom tape Usinainfo 04227 thermal tape used to cover the substrates
Kurt J Lesker magnetron sputtering system Kurt J Lesker —— Sputtering equipment used to deposit compact films
Lead (II) iodide Alfa Aesar 10101-63-0 PbI2 salt- 99.998% purity
methylammonium iodide Dyesol 14965-49-2 CH3NH3I salt
N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis (4-methoxyphenyl)-9,9′-spirobi [9H-fluorene]-2,2′,7,7′-tetramine Sigma Aldrich 207739-72-8 Spiro-OMeTAD salt, 99% purity
Niobium target of 3” CBMM- Brazilian Metallurgy and Mining Company —— niobium sputtering target used in the sputtering system
N-N dimethylformamide Merck 68-12-2 solvent with maximum of 0.003% H2O
TiO2 paste Dyesol DSL 30NR-D titanium dioxide paste
tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide] Dyesol 329768935 FK 209 Co(III) TFSL salt

Riferimenti

  1. Wasa, K., Kitabatake, M., Adachi, H. . Thin film materials technology : sputtering of compound materials. , (2004).
  2. Kelly, P. J., Arnell, R. D. Magnetron sputtering: A review of recent developments and applications. Vacuum. 56, 159-172 (2000).
  3. Chen, W. -. C., Peng, C. Y., Chang, L. Heteroepitaxial growth of TiN film on MgO (100) by reactive magnetron sputtering. Nanoscale Research Letters. 9, 551 (2014).
  4. Guo, Q. X., et al. Heteroepitaxial growth of gallium nitride on ( 1 1 1 ) GaAs substrates by radio frequency magnetron sputtering. Journal of Crystal Growth. 239, 1079-1083 (2002).
  5. Berg, S., Nyberg, T. Fundamental understanding and modeling of reactive sputtering processes. Thin Solid films. (476), 215-230 (2005).
  6. Wong, M. S., Sproul, W. D., Chu, X., Barnett, S. A. Reactive magnetron sputter deposition of niobium nitride films. Journal Vacuum Science & Technology A: Vacuum, Surfaces and Films. 11, 1528-1533 (2002).
  7. Zoita, C. N., Braic, L., Kiss, A., Braic, M. Characterization of NbC coatings deposited by magnetron sputtering method. Surface and Coatings Technology. 204, 2002-2005 (2010).
  8. Nico, C., Monteiro, T., Graça, M. P. F. Niobium oxides and niobates physical properties: Review and prospects. Progress in Materials Science. 80, 1-37 (2016).
  9. Aegerter, M. A., Schmitt, M., Guo, Y. Sol-gel niobium pentoxide coatings: Applications to photovoltaic energy conversion and electrochromism. International Journal of Photoenergy. 4, 1-10 (2002).
  10. Fernandes, S. L., et al. Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells. Proceedings of SPIE – International Society for Optics and Photonics. 9936, 9936 (2016).
  11. Fernandes, S. L., et al. Nb2O5hole blocking layer for hysteresis-free perovskite solar cells. Materials Letters. 181, 103-107 (2016).
  12. Hamada, K., Murakami, N., Tsubota, T., Ohno, T. Solution-processed amorphous niobium oxide as a novel electron collection layer for inverted polymer solar cells. Chemical Physics Letters. 586, 81-84 (2013).
  13. Aegerter, M. a. Sol-gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Solar Energy Materials and Solar Cells. 68, 401-422 (2001).
  14. Rani, R. A., Zoolfakar, A. S., O’Mullane, A. P., Austin, M. W., Kalantar-Zadeh, K. Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. Journal Materials Chemistry A. 2, 15683-15703 (2014).
  15. Foroughi-Abari, A., Cadien, K. C. Growth, structure and properties of sputtered niobium oxide thin films. Thin Solid Films. 519, 3068-3073 (2011).
  16. Numata, Y., et al. Nb-doped amorphous titanium oxide compact layer for formamidinium-based high efficiency perovskite solar cells by low-temperature fabrication. Journal Materials Chemistry A. 6, 9583-9591 (2018).
  17. Graça, M. P. F., Meireles, A., Nico, C., Valente, M. A. Nb2O5 nanosize powders prepared by sol-gel – Structure, morphology and dielectric properties. Journal of Alloys and Compounds. 553, 177-182 (2013).
  18. Kogo, A., Numata, Y., Ikegami, M., Miyasaka, T. Nb 2 O 5 Blocking Layer for High Open-circuit Voltage Perovskite Solar Cells. Chemistry Letters. 44, 829-830 (2015).
  19. Ueno, S., Fujihara, S. Effect of an Nb2O5 nanolayer coating on ZnO electrodes in dye-sensitized solar cells. Electrochimica Acta. 56, 2906-2913 (2011).
  20. Fernandes, S. L., et al. Exploring the Properties of Niobium Oxide Films for Electron Transport Layers in Perovskite Solar Cells. Frontiers in Chemistry. 7, 1-9 (2019).
  21. Shirani, A., et al. Tribologically enhanced self-healing of niobium oxide surfaces. Surface and Coatings Technology. 364, 273-278 (2014).
  22. Yan, J., et al. Nb2O5/TiO2 heterojunctions: Synthesis strategy and photocatalytic activity. Applied Catalysis B: Environmental. 152 (1), 280-288 (2014).

Play Video

Citazione di questo articolo
Fernandes, S. L., Affonço, L. J., Junior, R. A. R., da Silva, J. H. D., Longo, E., Graeff, C. F. d. O. Niobium Oxide Films Deposited by Reactive Sputtering: Effect of Oxygen Flow Rate. J. Vis. Exp. (151), e59929, doi:10.3791/59929 (2019).

View Video