Summary

分离外体富集的细胞外囊泡携带颗粒细胞-巨噬细胞-胚胎干细胞的细胞外刺激因子

Published: November 11, 2021
doi:

Summary

这项研究描述了一种将携带免疫刺激性粒细胞巨噬细胞刺激因子的外细胞富集细胞外囊泡从胚胎干细胞中分离的方法。

Abstract

胚胎干细胞(ESCs)是多能干细胞,能够自我更新和分化到所有类型的胚胎细胞。像许多其他细胞类型一样,ESC 将小膜囊泡(如外显子)释放到细胞外环境中。外显子是细胞间交流的重要中介,在许多(病理)生理过程中发挥着基本作用。粒细胞-巨噬细胞群刺激因子(GM-CSF)作为细胞因子调节免疫反应。GM-CSF在外显子中的存在有可能增强其免疫调节功能。在这里,GM-CSF在穆林ESC细胞系ES-D3中被稳定地过度表达。开发了一个协议,将高质量的外体富集细胞外囊泡(EV)与ES-D3细胞分离出来,从而过度表达GM-CSF。孤立的外体丰富的电动汽车的特点是各种实验方法。重要的是,在富含外显子的电动汽车中发现了大量GM-CSF。总的来说,来自ESC的具有转基因-CSF的外生丰富型电动汽车可以作为无细胞囊泡来发挥其免疫调节作用。

Introduction

ESC来自植入前胚胎1的胚泡阶段。作为多能干细胞,ESC有能力自我更新并分化成任何类型的胚胎细胞。由于其显著的发展潜力和长期增殖能力,ESC对生物医学研究具有极其宝贵的价值。目前的研究工作主要集中在ESC治疗各种重大病理疾病的潜力,包括糖尿病,心脏病和神经退行性疾病2,3,4。

众所周知,哺乳动物细胞,包括ESC,会向细胞外环境释放大小不一的囊泡,这些EV由于在细胞间通信中的作用而具有许多生理和病理功能。在不同的子类型EV中,外显子是小膜囊从不同细胞类型释放到细胞外空间后融合的中间内分泌室,多血管体(MVB),与等离子膜6。据报道,外显体可以调解细胞间的交流,并严重参与许多(病理)生理过程7,8。外显子从它们自己的母细胞中继承了一些生物功能,因为外体含有从细胞溶胶中获取的生物材料,包括蛋白质和核酸。因此,相关的抗原或刺激特定疾病免疫反应的因素被封装在特定类型的细胞9的外源中。这为探索肿瘤衍生外显体作为抗癌疫苗10的临床试验铺平了道路。

GM-CSF是由不同类型的免疫细胞11分泌的细胞因子。新出现的证据表明,GM-CSF激活和调节免疫系统,并在抗原呈现过程中发挥着至关重要的作用。例如,一份临床报告表明,GM-CSF刺激免疫反应肿瘤作为疫苗辅助剂13。14日的临床试验中,研究了几种基于GM-CSF的癌症免疫治疗策略,以利用GM-CSF强大的免疫刺激活性。其中,由辐照GM-CSF分泌肿瘤细胞组成的癌症疫苗通过诱导细胞和幽默抗肿瘤反应以及随后转移肿瘤15中的坏死,在晚期黑色素瘤患者中显示出一定的希望。

由于来自ESC的外显子具有与原始ESC相似的生物活动,因此可能来自ESC的转基因-CSF携带的外体可以起到无细胞囊泡的作用,以调节免疫反应。本文介绍了从ESC中生产出高质量外体浓缩电动汽车的详细方法,该方法表达了GM-CSF。这些富含外体的电动汽车有可能作为免疫调节囊泡来调节免疫反应。

Protocol

1. 培养ES-D3细胞 要生成无外显子的母牛血清 (FBS),在 4 °C 下以 100,000 x g 的速度将 FBS 装载到超中心和离心机中,持续 16 小时。 离心后,收集血清超高纳特作为无外奥体的FBS,用于培育粘膜ESC细胞系ES-D3和获得富含外体的EV。 在电镀ES-D3细胞之前,在室温下使用明胶(0.1%)涂抹15厘米的组织培养皿30分钟。 按照先前描述的协议16,培养ES-D3细胞没?…

Representative Results

GM-CSF 在穆林 ESC 中表达过度。为了在ES-D3细胞中稳定地过度表达GM-CSF,将MM-CSF cDNA克隆成一个转染载体,以生成表达载体pEF1+-mGM-CSF-IRES-hrGFP(图1A)。通过转染,GM-CSF在ES-D3细胞中表达过度,约20%的瞬态瞬态瞬态ES-D3细胞为GFP阳性。细胞克隆稳定过度表达GM-CSF或空矢量控制被FACS收购。如图1 B</stron…

Discussion

本研究展示了一种高效的方法,可以产生携带免疫刺激蛋白GM-CSF的富含外体的EV,可用于研究富含外体的电动汽车的免疫调节作用。一些研究表明,外显体表现出免疫调节和抗肿瘤功能22。因此,来自表达转基因-CSF的ESC的外显子可能也具有调节免疫反应的生物活动。在本协议中,外源性粘液GM-CSF通过转染在木质ES-D3细胞中稳定过度表达(图1)。重要的是,?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢阿尔卡迪乌斯·斯卢萨尔奇克先生和肯塔基生物医学研究基础设施网络(KBRIN,P20GM103436)获得传输电子显微镜图像。这项工作得到了NIH AA018016-01(J.W.E.)、肯塔基联邦研究挑战信托基金(J.W.E.)、NIH CA106599和CA175003(C.L.)、NIH CA198249(K.Y.)和自由呼吸研究补助金(K.Y.)的资助。

Materials

Alkaline phosphate, Calf Intestinal New England Biolabs M0290S Dephosphorylating DNA plasmid
anti-Annexin V mAb Santa Cruz Biotechnology clone H-3, sc-74438 Western blot, RRID:AB_1118989
anti-CD81 mAb Santa Cruz Biotechnology clone B-11, sc-166029 Western blot, RRID:AB_2275892
anti-cytochrome c mAb Santa Cruz Biotechnology clone A-8, sc-13156 Western blot, RRID:AB_627385
anti-Flotillin-1 mAb Santa Cruz Biotechnology clone C-2; sc-74566 Western blot, RRID:AB_2106563
anti-GAPDH pAb Rockland 600-401-A33S Western blot, RRID:AB_11182910
anti-mouse IgG, goat, peroxidase-conjugated Thermo Fisher 31430 Western blot, RRID:AB_228307
anti-Oxphos COX IV-subunit IV mAb Thermo Fisher clone 20E8C12 A21348 Western blot, RRID:AB_221509
anti-protein disulfide isomerase (PDI) pAb Enzo ADI-SPA-890 Western blot, RRID:AB_10616242
anti-rabbit IgG, goat, peroxidase-conjugated Thermo Fisher 31460 Western blot, RRID:AB_228341
BCA (bicinchoninic acid) assay Thermo Fisher 23223 Determining protein concentrations
Bis-Tris PAGE Gel, ExpressPlus, 4-20% Genscript M42015 Western blot
Carbenicillin, Disodium Salt Thermo Fisher 10177012 Selecting E. coli colonies
Centrifuge, Avanti J-26 XPI Beckman Coulter Low speed centrifugation
Centrifuge rotor, JA-10 Beckman Coulter 09U1597 Low speed centrifugation
Centrifuge bottle, Nalgene PPCO Thermo Fisher 3120-0500PK Low speed centrifugation
Cu grids with carbon support film Electron Microscopy Sciences FF200-Cu Acquiring electron microscopy images
EcoRI New England Biolabs R0101 Digesting DNA plasmid
Enhanced chemiluminescence detection system Thermo Fisher 32106 Western blot
FACScalibur flow cytometer Becton Dickinson Examining GFP levels of ES-D3 cells
Fetal bovine serum ATCC SCRR-30-2020 Medium for ES-D3 cells
Fisherbrand Sterile Cell Strainers; Mesh Size: 40μm Thermo Fisher 22-363-547 Filtering ES-D3 cells for FACS sorting
Gelatin (0.1%) Thermo Fisher ES006B Culturing ES-D3 cells
GM-CSF ELISA kit Thermo Fisher 88733422 Determining GM-CSF concentrations
KnockOut Dulbecco’s Modified Eagle’s Medium Thermo Fisher 10-829-018 Medium for ES-D3 cells
Leukemia Inhibitory Factor Thermo Fisher ESG1106 Medium for ES-D3 cells
L-glutamine VWR VWRL0131-0100 Medium for ES-D3 cells
Lipofectamine 2000 transfection reagent Thermo Fisher 11668019 Transfecting ES-D3 cells
Microplate reader, PowerWave XS BioTek Determining GM-CSF concentrations
MoFlo XDP high-speed cell sorter Beckman Coulter Isolating single ES-D3 cell clones
NEB 5-alpha Competent E. coli New England Biolabs C2988J Generating GM-CSF expression plasmid
Neomycin Thermo Fisher 10-131-035 Selecting ES-D3 clones
Non-essential amino acids Thermo Fisher SH3023801 Medium for ES-D3 cells
Non-fat dry milk Thermo Fisher NC9022655 Western blot
Opti-MEM I Reduced Serum Medium Thermo Fisher 31985062 Transfecting ES-D3 cells
Paraformaldehyde Electron Microscopy Sciences 15710 Acquiring electron microscopy images
Penicillin/streptomycin VWR sc45000-652 Medium for ES-D3 cells
Plasmid pEF1a-FD3ER-IRES-hrGFP Addgene 37270 Generating GM-CSF expression plasmid
PVDF membranes Millipore EMD IPVH00010 Western blot
QIAprep Spin Miniprep Kit (250) QIAGEN 27106 Generating GM-CSF expression plasmid
QIAquick Gel Extraction Kit (50) QIAGEN 28704 Generating GM-CSF expression plasmid
Quick Ligation Kit New England Biolabs M2200S Generating GM-CSF expression plasmid
Transmission electron microscope Hitachi HT7700 Acquiring electron microscopy images
Trypsin VWR 45000-660 Culturing ES-D3 cells
Ultracentrifuge, OptimaTM L-100 XP Beckman Coulter High speed centrifugation
Ultracentrifuge rotor, 45Ti Beckman Coulter 09U4454 High speed centrifugation
Ultracentrifuge polycarbonate bottle Beckman Coulter 355622 High speed centrifugation
UranyLess staining solution Electron Microscopy Sciences 22409 Acquiring electron microscopy images

Riferimenti

  1. Thomson, J. A., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282 (5391), 1145-1147 (1998).
  2. Sakthiswary, R., Raymond, A. A. Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regeneration Research. 7 (23), 1822-1831 (2012).
  3. Liu, Y. W., et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nature Biotechnology. 36 (7), 597-605 (2018).
  4. Aguayo-Mazzucato, C., Bonner-Weir, S. Stem cell therapy for type 1 diabetes mellitus. Nature Reviews: Endocrinology. 6 (3), 139-148 (2010).
  5. Thery, C., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracell Vesicles. 7 (1), 1535750 (2018).
  6. Raposo, G., Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology. 200 (4), 373-383 (2013).
  7. Meldolesi, J. Exosomes and Ectosomes in Intercellular Communication. Current Biology. 28 (8), R435-R444 (2018).
  8. Stremersch, S., De Smedt, S. C., Raemdonck, K. Therapeutic and diagnostic applications of extracellular vesicles. Journal of Control Release. 244 (Pt B), 167-183 (2016).
  9. Lindenbergh, M. F. S., Stoorvogel, W. Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annual Review of Immunology. 36, 435-459 (2018).
  10. Kunigelis, K. E., Graner, M. W. The Dichotomy of Tumor Exosomes (TEX) in Cancer Immunity: Is It All in the ConTEXt?. Vaccines (Basel). 3 (4), 1019-1051 (2015).
  11. Becher, B., Tugues, S., Greter, M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity. 45 (5), 963-973 (2016).
  12. Conti, L., Gessani, S. GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology. 213 (9-10), 859-870 (2008).
  13. Higano, C. S., et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 115 (16), 3670-3679 (2009).
  14. Yan, W. L., Shen, K. Y., Tien, C. Y., Chen, Y. A., Liu, S. J. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy. 9 (4), 347-360 (2017).
  15. Dranoff, G., et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proceedings of the National Academy of Sciences of the United States of America. 90 (8), 3539-3543 (1993).
  16. Tremml, G., Singer, M., Malavarca, R. Chapter 1, Unit 1C 4, Culture of mouse embryonic stem cells. Current Protocols in Stem Cell Biology. , (2008).
  17. Kirsch, P., Hafner, M., Zentgraf, H., Schilling, L. Time course of fluorescence intensity and protein expression in HeLa cells stably transfected with hrGFP. Molecules and Cells. 15 (3), 341-348 (2003).
  18. Zeng, X., et al. Stable expression of hrGFP by mouse embryonic stem cells: promoter activity in the undifferentiated state and during dopaminergic neural differentiation. Stem Cells. 21 (6), 647-653 (2003).
  19. Yaddanapudi, K., et al. Vaccination with embryonic stem cells protects against lung cancer: is a broad-spectrum prophylactic vaccine against cancer possible?. PLoS One. 7 (7), e42289 (2012).
  20. Dalby, B., et al. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods. 33 (2), 95-103 (2004).
  21. Thery, C., Amigorena, S., Raposo, G., Clayton, A. Chapter 3, Unit 3 22, Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology. , (2006).
  22. Zhang, X., et al. Exosomes for Immunoregulation and Therapeutic Intervention in Cancer. Journal of Cancer. 7 (9), 1081-1087 (2016).
  23. Bunggulawa, E. J., et al. Recent advancements in the use of exosomes as drug delivery systems. Journal of Nanobiotechnology. 16 (1), 81 (2018).
  24. Schlesinger, S., Lee, A. H., Wang, G. Z., Green, L., Goff, S. P. Proviral silencing in embryonic cells is regulated by Yin Yang 1. Cell Reports. 4 (1), 50-58 (2013).
  25. Dranoff, G. GM-CSF-based cancer vaccines. Immunological Reviews. 188, 147-154 (2002).
  26. Park, Y. G., et al. Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro. Development and Reproduction. 19 (3), 119-126 (2015).
  27. Lin, S., Talbot, P. Methods for culturing mouse and human embryonic stem cells. Methods in Molecular Biology. 690, 31-56 (2011).
  28. Yaddanapudi, K., et al. Exosomes from GM-CSF expressing embryonic stem cells are an effective prophylactic vaccine for cancer prevention. OncoImmunology. 8 (3), 1561119 (2019).
check_url/it/60170?article_type=t

Play Video

Citazione di questo articolo
Meng, S., Whitt, A. G., Tu, A., Eaton, J. W., Li, C., Yaddanapudi, K. Isolation of Exosome-Enriched Extracellular Vesicles Carrying Granulocyte-Macrophage Colony-Stimulating Factor from Embryonic Stem Cells. J. Vis. Exp. (177), e60170, doi:10.3791/60170 (2021).

View Video