Summary

通过物理和各向异性扩张对人体组织部分的纳米成像

Published: September 25, 2019
doi:

Summary

临床组织样本的纳米成像可以增进对疾病发病机制的认识。扩张病理学 (ExPath) 是扩展显微镜 (ExM) 的一个版本,经过修改,与标准临床组织样本兼容,使用传统的衍射受限显微镜探索生物分子的纳米级配置。

Abstract

在现代病理学中,光学显微镜通过揭示临床标本的微观结构在疾病诊断中起着重要的作用。然而,在使用传统的光学成像方法时,基本的物理衍射极限可以防止对纳米级解剖学和细微的病理变化进行询问。在这里,我们描述了一种简单而廉价的方案,称为扩张病理学(ExPath),用于常见类型的临床初级组织标本的纳米级光学成像,包括固定冷冻或形式固定石蜡嵌入(FFPE)组织部分。该方法通过化学化地将组织样品转化为组织水凝胶杂交,并在纯水中的多个尺度上物理地将其向各向异性扩展,从而规避了光学衍射极限。由于膨胀,以前无法解析的分子被分离,因此可以使用传统的光学显微镜进行观察。

Introduction

在三维(3D)环境下研究组织的分子组织,可以为生物功能和疾病发展提供新的了解。然而,这些纳米级环境超出了传统衍射有限显微镜(200~300nm)的分辨率,其中最小可解距,d由d <!––> +/NA定义。这里*是光的波长,NA是成像系统的数值孔径 (NA)。最近,新开发的超分辨率成像技术1、2、3,包括刺激发射消耗(STED),使荧光标记分子的直接可视化成为可能,光激活定位显微镜 (PALM)、随机光学重建显微镜 (STORM) 和结构化照明显微镜 (SIM)。尽管这些成像技术彻底改变了对纳米尺度生物功能的理解,但实际上,它们往往依赖于昂贵的和/或专门的设备和图像处理步骤,与传统的光学成像,需要具有特定特性(如光切换能力和/或高光稳定性)的荧光光道。此外,在组织标本上执行 3D 超分辨率成像仍是一项挑战。

膨胀显微镜 (ExM) 于 2015 年首次推出4,通过物理膨胀嵌入在可膨胀聚电解质水凝胶中的保存样品,提供了成像纳米尺度特征(<70 nm)的替代方法。在这里,关键生物分子和/或标签原位固定在聚合物网络中,在化学处理后可以异位扩展。由于物理膨胀提高了总有效分辨率,因此可以使用传统的衍射限制成像系统解决感兴趣的分子。自原始协议发布以来,定制合成荧光标签被固定在聚合物网络4上,新的策略被用来直接锚定蛋白质(蛋白质保留ExM,或proExM)5, 6、7、8、9和 RNA9101112到水凝胶,并通过迭代增加物理放大倍率膨胀13或适应凝胶化学8,14,15。

在这里,我们提出了proExM的改编版本,称为扩张病理学(ExPath)16,它已被优化的临床病理格式。该协议将临床样本(包括正式固定石蜡嵌入 (FFPE)、血氧林和 eosin (H&E) 染色,以及安装在玻璃幻灯片上的新鲜冷冻人体组织标本转换为与 ExM 兼容的状态。蛋白质然后锚定在水凝胶和机械均质执行 (图 116.通过样品4倍线性扩展,可以使用分辨率仅为±300 nm的传统共聚焦显微镜获得多色超分辨率(±70 nm)图像,还可以与其他超分辨率成像技术相结合。

Protocol

1. 库存试剂和溶液的制备 准备凝胶溶液组件。注:溶液浓度以克/mL(w/v%)表示。 制作以下库存溶液:38%(w/v)丙烯酸钠(SA),50%(w/v)丙烯酰胺(AA),2%(w/v)N,N,N-甲苯乙酰氨基甲酰胺(Bis),和29.2%(w/v)氯化钠(NaCl)。将化合物溶解在双重去离子水中(ddH2O)。使用表 1中的金额作为参考;准备的解决方案可以根据需要放大或缩小数量?…

Representative Results

如果协议已成功执行(图1),样品在机械均质化后将显示为扁平和透明的凝胶(图3A),在水中可膨胀3~4.5倍(图3B)。根据最终膨胀因子和成像系统使用5,16,提供±70 nm的有效分辨率。图 4显示了使用 ExPath 协议处理的 5 μm 厚 FFPE 肾脏样…

Discussion

在这里,我们介绍ExPath协议16,proExM5的变体,可应用于病理学中最常用的临床活检样本类型,包括FFPE、H&E染色和玻璃玻片上新鲜冷冻的标本。标本的格式转换、抗原检索和免疫染色遵循不特定于 ExPath 的常用协议。与原来的proExM协议9不同,ExPath依赖于消化缓冲液中EDTA的更高浓度,这改善了形式固定组织的扩展,如最初的ExPath研?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了卡内基梅隆大学(YZ)的学院创业基金和NIH主任的新创新者奖(DP2 OD025926-01至YZ)的支持。

Materials

4-hydroxy-TEMPO (4HT) Sigma Aldrich 176141 Inhibitor
6-well glass-bottom plate (#1.5 coverglass) Cellvis P06-1.5H-N
Acetone Fischer Scientifc A18-500
Acrylamide Sigma Aldrich A8887
Acryloyl-X, SE (AcX) Invitrogen A20770
Agarose Fischer Scientifc BP160-100
Ammonium persulfate (APS) Sigma Aldrich A3678 Initiatior
Anti-ACTN4 antibody produced in rabbit Sigma Aldrich HPA001873
Anti-Collagen IV antibody produced in mouse Santa Cruz Biotech sc-59814
Anti-Vimentin antibody produced in chicken Abcam ab24525
Aqua Hold II hydrophobic pen Scientific Device 980402
Breast Common Disease Tissue Array Abcam ab178113
DAPI (1 mg/mL) Thermo Scientific 62248 Nuclear stain
Diamond knife No. 88 CM General Tools 31116
Ethanol Pharmco 111000200
Ethylenediaminetetraacetic
acid (EDTA) 0.5 M
VWR BDH7830-1
FFPE Kidney Sample USBiomax HuFPT072
Forceps
Goat Anti-Chicken IgY (H+L), Highly Cross-Adsorbed CF488A Biotium 20020
Goat Anti-Chicken IgY (H+L), Highly Cross-Adsorbed CF633 Biotium 20121
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Alexa Fluor 546 Invitrogen A11010
MAXbind Staining Medium Active Motif 15253 Can be substituted with non-commercial staning buffer of choice.
MAXblock Blocking Medium Active Motif 15252 Can be substituted with non-commercial blocking buffer of choice.
MAXwash Washing Medium Active Motif 15254 Can be substituted with non-commercial washing buffer of choice.
Micro cover Glass #1 (24x60mm) VWR 48393 106
Micro cover Glass #1.5 (24x60mm) VWR 48393 251
N,N,N′,N′-
Tetramethylethylenediamine (TEMED)
Sigma Aldrich T9281 Accelerator
N,N′-Methylenebisacrylamide Sigma Aldrich M7279
Normal goat serum Jackson Immunoresearch 005-000-121 For preparing blocking buffer. Dependent on animal host of secondary antibodies.
Nunclon 4-Well x 5 mL MultiDish Cell Culture Dish Thermo Fisher 167063 Multi-well plastic culture dish
Nunclon 6-Well Cell Culture Dish Thermo Fisher 140675
Nunc 15mL Conical Thermo Fisher 339651
Nunc 50mL Conical Thermo Fisher 339653
Orbital Shaker
Paint brush
pH Meter
Phosphate Buffered Saline (PBS), 10x Solution Fischer Scientifc BP399-1
Plastic Petri Dish (100 mm) Fischer Scientifc FB0875713
Proteinase K (Molecular Biology Grade) Thermo Scientific EO0491
Razor blade Fischer Scientifc 12640
Safelock Microcentrifuge Tubes 1.5 mL Thermo Fisher 3457
Safelock Microcentrifuge Tubes 2.0 mL Thermo Fisher 3459
Sodium acrylate Sigma Aldrich 408220
Sodium chloride Sigma Aldrich S6191
Sodium citrate tribasic dihydrate Sigma Aldrich C8532-1KG
Tris Base Fischer Scientifc BP152-1
Triton X-100 Sigma Aldrich T8787
Wheat germ agglutinin labeled with CF640R Biotium 29026
Xylenes Sigma Aldrich 214736

Riferimenti

  1. Hell, S. W. Far-Field Optical Nanoscopy. Science. 316 (5828), 1153-1158 (2007).
  2. Combs, C. A., Shroff, H. Fluorescence microscopy: A concise guide to current imaging methods. Current Protocols in Neuroscience. 79 (1), 2.1.1-2.1.25 (2017).
  3. Schermelleh, L., Heintzmann, R., Leonhardt, H. A guide to super-resolution fluorescence microscopy. Journal of Cell Biology. 190 (2), 165-175 (2010).
  4. Chen, F., Tillberg, P. W., Boyden, E. S. Expansion microscopy. Science. 347 (6221), 543-548 (2015).
  5. Tillberg, P. W., et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nature Biotechnology. 34, 987-992 (2016).
  6. Chozinski, T. J., et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nature Methods. 13 (6), 485-488 (2016).
  7. Ku, T., et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nature Biotechnology. 34 (9), 973-981 (2016).
  8. Truckenbrodt, S., Maidorn, M., Crzan, D., Wildhagen, H., Kabatas, S., Rizzoli, S. O. X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Reports. 19 (9), e45836 (2018).
  9. Asano, S. M., et al. Expansion Microscopy: Protocols for Imaging Proteins and RNA in Cells and Tissues. Current Protocols in Cell Biology. 80 (1), 1-41 (2018).
  10. Chen, F., et al. Nanoscale imaging of RNA with expansion microscopy. Nature Methods. 13 (8), 679-684 (2016).
  11. Tsanov, N., et al. SmiFISH and FISH-quant – A flexible single RNA detection approach with super-resolution capability. Nucleic Acids Research. 44 (22), e165 (2016).
  12. Wang, G., Moffitt, J. R., Zhuang, X. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Scientific Reports. 8 (1), 1-13 (2018).
  13. Chang, J. B., et al. Iterative expansion microscopy. Nature Methods. 14 (6), 593-599 (2017).
  14. Cipriano, B. H., et al. Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules. 47 (13), 4445-4452 (2014).
  15. Truckenbrodt, S., Sommer, C., Rizzoli, S. O., Danzl, J. G. A practical guide to optimization in X10 expansion microscopy. Nature Protocols. 14 (3), 832-863 (2019).
  16. Zhao, Y., et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nature Biotechnology. 35 (8), 757-764 (2017).
check_url/it/60195?article_type=t

Play Video

Citazione di questo articolo
Klimas, A., Bucur, O., Njeri, B., Zhao, Y. Nanoscopic Imaging of Human Tissue Sections via Physical and Isotropic Expansion. J. Vis. Exp. (151), e60195, doi:10.3791/60195 (2019).

View Video