Summary

分散(Ex Vivo)的毛骨球模型,去除了除位肌肉,用于在膀胱填充期间直接进入苏布罗氦

Published: November 28, 2019
doi:

Summary

无分泌物的膀胱模型允许直接进入亚尿层,以研究在尿液储存和排空期间调节亚尿层/拉米纳尿体中生物活性介质可用性的本地机制。制备与填充完整膀胱非常相似,允许在无系统影响的情况下进行压力体积研究。

Abstract

先前的研究已经确定,在静水压力变化、拉伸、细胞肿胀或阻力时,在静水压力变化、拉伸、细胞肿胀或阻力时,以及气囊流明在填充结束时,从扁平膀胱粘液片中释放化学物质,暴露于静水压力或机械拉伸的变化中,并暴露于培养的泌尿细胞中。这些发现导致假设,这些介质也被释放在子尿层(SubU)/拉米纳丙酸(LP)在膀胱填充,其中他们影响细胞深在膀胱壁,最终调节膀胱兴奋性。此类研究中至少有两个明显的局限性:1) 这些方法均未提供有关子U/LP 中调解员存在的直接信息;2) 使用的刺激不是生理上的,并且不重述膀胱的真实填充。在这里,我们讨论一个程序,使直接访问膀胱粘液的亚尿道表面在膀胱填充过程中。我们创造的无鼠排骨制剂与完整膀胱的填充非常相似,允许在没有来自脊柱反射和分离肌的混淆信号的情况下,对膀胱进行压力体积研究。使用新型无分子膀胱模型,我们最近证明,在膀胱填充过程中,不能将介质的宫内测量用作 SubU/LP 中释放或存在的物的代理。该模型能够检查在膀胱填充过程中释放、代谢产生和/或输送到SubU/LP的泌尿衍生信号分子,以将信息传输到膀胱的神经元和平滑肌,并调节其在节制和气动过程中的兴奋性。

Introduction

此模型的目的是使膀胱粘膜在膀胱填充的不同阶段能够直接进入下粘膜侧。

膀胱在填充过程中必须避免过早收缩,当达到临界体积和压力时,膀胱必须避免过早收缩。尿液异常的失禁或空位经常与膀胱填充过程中分度平滑肌(DSM)的异常兴奋性有关。DSM 的可兴奋性由平滑肌细胞固有的因素和膀胱壁内不同细胞类型产生的影响决定。膀胱壁由尿道(粘液)、亚尿体(SubU)/拉米纳利普里亚(LP)、德特鲁索平滑肌(DSM)和塞罗萨(图1A)组成。尿体由伞状细胞(即尿体最外层)、中间细胞和基底细胞(即尿体最内层)组成。各种类型的细胞,包括间质细胞、成纤维细胞、神经终端、小血管和免疫细胞都驻留在SubU/LP中。人们普遍认为膀胱尿毒症是一种感觉器官,通过将介质释放到影响SubU/LP和DSM1、2、3的细胞的亚粘体中,启动反射性粘动和节制。在大多数情况下,这些假设基于已经证明释放介质的研究:从暴露于静水压力变化的粘液片4,5;从培养的尿毒细胞暴露到拉伸6,7,低度引起的细胞肿胀7阻力8;从分离的膀胱壁条受体或神经激活9,10,11,12,13,14;并在膀胱流明在膀胱填充结束15,16,17,18,19。虽然这些研究有助于证明在机械刺激膀胱壁段或培养的泌尿细胞时释放介质,但它们需要有直接证据支持,以释放通过复制膀胱填充的生理刺激引起的子粘膜中介质的释放。这是一项具有挑战性的任务,因为 SubU/LP 位于膀胱壁深处,妨碍在膀胱填充过程中直接进入 SubU/LP 附近。

在这里,我们演示一个分散(前体)鼠膀胱模型与去皮肌肉去除13,这是开发,以促进研究局部机制的中导转导,参与膀胱尿,DSM和膀胱壁的其他细胞类型之间的信号。这种方法优于使用扁平膀胱壁片、膀胱壁带或培养的泌尿细胞,因为它允许在SubU/LP附近直接测量尿毒源介质,这些介质是因膀胱中的生理压力和体积而释放或形成的,并避免细胞培养中潜在的表型变化。它可用于测量子U/LP中调解员在膀胱填充的不同阶段的可用性、释放、代谢和横射物传输(图1B)。该制剂还可用于检查过度活跃和不足的膀胱综合征模型中的泌尿信号和中导转导。

Protocol

本手稿中描述的涉及动物的所有程序均按照国家卫生研究院《实验室动物护理和使用指南》和内华达大学机构动物使用与护理委员会进行。 注:此处介绍的模型包括去除除精肌肉,而尿道和SubU/LP保持完好(图1B),使调查人员在膀胱填充过程中直接访问SubU/LP。 1. 解剖无除气囊准备 将分离的?…

Representative Results

无鼠排叶的膀胱制剂壁完好无损,包含除 DSM 和 Serosa 外的所有层。原理证明研究表明,无DSM的膀胱壁包括尿道和SubU/LP,而图尼卡肌肉和serosa则不存在(图2)13。 无分子膀胱的填充近似于正常膀胱填充。图3显示了以不同填充速率、体积和宫内压力填充体外?…

Discussion

膀胱有两个功能:尿液的储存和排空。这些功能的正常运行需要通过膀胱壁中的细胞对宫内体积和压力和信号进行适当的机械感应,以调节突生肌肉的兴奋性。膀胱粘液(尿毒症)被认为通过释放SubU/LP中影响膀胱壁中多种细胞类型的多种信号分子来调节膀胱兴奋性。目前,大多数对泌尿原介质的表征尝试涉及使用不繁殖生理膀胱填充的膀胱制剂(例如,扁平膀胱壁片、膀胱壁条或培养细胞)。膀…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家糖尿病、消化和肾脏疾病研究所资助DK41315的支持。

Materials

CaCl2 Fisher C79 Source flexible
Dextrose Fisher D16 Source flexible
Dissecting pins Fine Science Tools 26002-20 Source flexible
Infusion Pump Kent Scientific GenieTouch Source flexible
KCl Fisher P217 Source flexible
KH2PO4 Fisher P284 Source flexible
Light source SCHOTT ACEI Source flexible
Microscope Olympus SZX7 Flexible to use any scope
MgCl2 Fisher M33 Source flexible
NaCl Fisher S671 Source flexible
NaHCO3 Fisher S233 Source flexible
Needles 25G Becton Dickinson 305122 Source flexible
Organ bath Custom made Flexible source; We made it from Radnoti dissecting dish
PE-20 tubing Intramedic 427405 Source flexible
Pressure transducer AD instrument Source flexible
S&T Forceps Fine Science Tools 00632-11 Source flexible
Software pressure-volume AD Instruments Power lab
Suture Nylon, 6-0 AD surgical S-N618R13 Source flexible
Suture Silk, 6-0 Deknatel via Braintree Scientific, Inc. 07J1500190 Source flexible
Syringes 1 ml Becton Dickinson 309602 Source flexible
Vannas Spring Scissors Fine Science Tools 15000-08 Source flexible
Water circulator Baxter K-MOD 100 Source flexible

Riferimenti

  1. Apodaca, G., Balestreire, E., Birder, L. A. The uroepithelial-associated sensory web. Kidney International. 72, 1057-1064 (2007).
  2. Fry, C. H., Vahabi, B. The Role of the Mucosa in Normal and Abnormal Bladder Function. Basic and Clinical Pharmacology and Toxicology. , 57-62 (2016).
  3. Merrill, L., Gonzalez, E. J., Girard, B. M., Vizzard, M. A. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nature Reviewes Urology. 13, 193-204 (2016).
  4. Ferguson, D. R., Kennedy, I., Burton, T. J. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes–a possible sensory mechanism?. Journal of Physiology. 505, 503-511 (1997).
  5. Wang, E. C., et al. ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. Journal of Clinical Investigation. 115, 2412-2422 (2005).
  6. Miyamoto, T., et al. Functional role for Piezo1 in stretch-evoked Ca(2)(+) influx and ATP release in urothelial cell cultures. Journal of Biological Chemistry. 289, 16565-16575 (2014).
  7. Mochizuki, T., et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. Journal of Biological Chemistry. 284, 21257-21264 (2009).
  8. McLatchie, L. M., Fry, C. H. ATP release from freshly isolated guinea-pig bladder urothelial cells: a quantification and study of the mechanisms involved. BJU International. 115, 987-993 (2015).
  9. Birder, L. A., Apodaca, G., de Groat, W. C., Kanai, A. J. Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. American Journal of Physiology Renal Physiology. 275, F226-F229 (1998).
  10. Birder, L. A., Kanai, A. J., de Groat, W. C. DMSO: effect on bladder afferent neurons and nitric oxide release. Journal of Urology. 158, 1989-1995 (1997).
  11. Birder, L. A., et al. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proceedings of the National Academy of Sciences U S A. 98, 13396-13401 (2001).
  12. Birder, L. A., et al. Beta-adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. Journal of Neuroscience. 22, 8063-8070 (2002).
  13. Durnin, L., et al. An ex vivo bladder model with detrusor smooth muscle removed to analyse biologically active mediators released from the suburothelium. Journal of Physiology. 597, 1467-1485 (2019).
  14. Yoshida, M., et al. Non-neuronal cholinergic system in human bladder urothelium. Urology. 67, 425-430 (2006).
  15. Beckel, J. M., et al. Pannexin 1 channels mediate the release of ATP into the lumen of the rat urinary bladder. Journal of Physiology. 593, 1857-1871 (2015).
  16. Collins, V. M., et al. OnabotulinumtoxinA significantly attenuates bladder afferent nerve firing and inhibits ATP release from the urothelium. BJU International. 112, 1018-1026 (2013).
  17. Daly, D. M., Nocchi, L., Liaskos, M., McKay, N. G., Chapple, C., Grundy, D. Age-related changes in afferent pathways and urothelial function in the male mouse bladder. Journal of Physiology. 592, 537-549 (2014).
  18. Durnin, L., Hayoz, S., Corrigan, R. D., Yanez, A., Koh, S. D., Mutafova-Yambolieva, V. N. Urothelial purine release during filling of murine and primate bladders. American Journal of Physiology Renal Physiology. 311, F708-F716 (2016).
  19. Gonzalez, E. J., Heppner, T. J., Nelson, M. T., Vizzard, M. A. Purinergic signalling underlies transforming growth factor-beta-mediated bladder afferent nerve hyperexcitability. Journal of Physiology. 594, 3575-3588 (2016).
check_url/it/60344?article_type=t

Play Video

Citazione di questo articolo
Durnin, L., Corrigan, R. D., Sanders, K. M., Mutafova-Yambolieva, V. N. A Decentralized (Ex Vivo) Murine Bladder Model with the Detrusor Muscle Removed for Direct Access to the Suburothelium during Bladder Filling. J. Vis. Exp. (153), e60344, doi:10.3791/60344 (2019).

View Video