Summary

Etablierung und Analyse von dreidimensionalen (3D) Organoiden, abgeleitet von Patienten prostatakrebs Knochenmetastasen Proben und ihre Xenografts

Published: February 03, 2020
doi:

Summary

Dreidimensionale Kulturen von Patienten-BMPC-Proben und Xenografts von Knochenmetastasierung Prostatakrebs erhalten die funktionelle Heterogenität ihrer ursprünglichen Tumoren, was zu Zysten, Sphäroiden und komplexen, tumorartigen Organoiden führt. Dieses Manuskript bietet eine Optimierungsstrategie und ein Protokoll für die 3D-Kultur heterogener Patientenproben und deren Analyse mit IFC.

Abstract

Die dreidimensionale (3D) Kultur von Organoiden aus Tumorproben menschlicher Patienten und patientenabgeleitete Xenograft-Modelle (PDX), die als patientenabgeleitete Organoide (g.U.) bezeichnet werden, sind eine unschätzbare Ressource für die Untersuchung des Tumorgenese und Metastasierung von Prostatakrebs. Ihr Hauptvorteil besteht darin, dass sie die ausgeprägte genomische und funktionelle Heterogenität des ursprünglichen Gewebes im Vergleich zu herkömmlichen Zelllinien, die dies nicht tun, beibehalten. Darüber hinaus können 3D-Kulturen von g.A. verwendet werden, um die Auswirkungen der medikamentösen Behandlung auf einzelne Patienten vorherzusagen und sind ein Schritt in Richtung personalisierte Medizin. Trotz dieser Vorteile verwenden nur wenige Gruppen diese Methode routinemäßig, zum Teil aufgrund der umfassenden Optimierung der PDO-Kulturbedingungen, die für verschiedene Patientenproben erforderlich sein können. Wir haben zuvor gezeigt, dass unsere Prostatakrebs-Knochenmetastasierung PDX-Modell, PCSD1, die Resistenz der Knochenmetastasierung des Spenderpatienten gegen Anti-Androgen-Therapie rekapituliert hat. Wir verwendeten PCSD1 3D-Organoide, um die Mechanismen der Anti-Androgen-Resistenz weiter zu charakterisieren. Nach einem Überblick über die aktuell veröffentlichten Studien zu PDX- und PDO-Modellen beschreiben wir ein Schritt-für-Schritt-Protokoll für die 3D-Kultur von pDO unter Verwendung von gewölbten oder schwimmenden Kellermembran(z.B. Matrigel) Kugeln unter optimierten Kulturbedingungen. In vivo Stichbildgebung und Zellverarbeitung für die Histologie werden ebenfalls beschrieben. Dieses Protokoll kann weiter für andere Anwendungen optimiert werden, einschließlich Western Blot, Co-Culture, etc. und kann verwendet werden, um Eigenschaften von 3D-kultivierten g.Us-Dollar in Bezug auf Arzneimittelresistenz, Tumorigenese, Metastasen und Therapeutika zu erforschen.

Introduction

Dreidimensionale kultivierte Organoide haben die Aufmerksamkeit auf ihr Potenzial gelenkt, die In-vivo-Architektur, die zelluläre Funktionalität und die genetische Signatur ihrer ursprünglichen Gewebe1,2,3,4,5zu rekapitulieren. Am wichtigsten ist, 3D-Organoide aus Patiententumorgewebe oder Patienten abgeleitet Xenograft (PDX) Modelle bieten unschätzbare Möglichkeiten, Mechanismen der zellulären Signalisierung auf Tumorigenese zu verstehen und die Auswirkungen der medikamentösen Behandlung auf jede Zellpopulation6,7,8,9,10,11,12,13zu bestimmen. Drost et al.5 entwickelten ein Standardprotokoll zur Etablierung von Prostataorganoiden von Mensch und Maus, das im Bereich der Urologie weit verbreitet ist. Darüber hinaus wurden erhebliche Anstrengungen unternommen, um 3D-Organoide weiter zu charakterisieren und die detaillierten Mechanismen der Tumorgenese und Metastasierung4,12,14,15zu verstehen. Neben dem zuvor etablierten und weithin akzeptierten Protokoll für 3D-Organoidkulturen beschreiben wir hier ein Schritt-für-Schritt-Protokoll für die 3D-Kultur von pDO mit drei verschiedenen Doming-Methoden unter optimierten Kulturbedingungen.

In diesem Manuskript wurden 3D-Organoide als ex vivo Modell von Knochenmetastasierung Prostatakrebs (BMPC) etabliert. Die für diese Kulturen verwendeten Zellen stammten aus der Serie Prostate Cancer San Diego (PCSD) und wurden direkt von patienten ProstatakrebsKnochenmetastasen-Tumorgeweben (PCSD18 und PCSD22) oder von Patienten abgeleiteten Xenograft-Tumormodellen (PDX) (Proben mit den Namen PCSD1, PCSD13 und PCSD17) abgeleitet. Da spontane Knochenmetastasen von Prostatakrebszellen in gentechnisch veränderten Mausmodellen16selten sind, haben wir die direkte intrafemorale (IF) Injektion menschlicher Tumorzellen in männliche Rag2-/-‘c-/- Mäuse verwendet, um die PDX-Modelle von Knochenmetastasatasanasanzen zu etablieren17.

Sobald 3D-Organoide aus heterogenen Patiententumorzellen oder von Patienten abgeleiteten Xenografts nachgewiesen wurden, ist es wichtig, ihre Identität als Prostatatumorzellen zu bestätigen und ihre Phänotypen in den 3D-Organoidkulturen zu bestimmen. Die Immunfluoreszenzchemie (IFC) ermöglicht die Visualisierung der Proteinexpression vor Ort in jeder Zelle, was häufig auf die potenziellen Funktionen für bestimmte Zellpopulationen2,4hinweist. Im Allgemeinen sind IFC-Protokolle für eine große Anzahl von Proben, einschließlich Geweben und Zellen, einfach und vollständig optimiert. Die Zelldichte und die Anzahl der Organoide können jedoch deutlich niedriger sein als die der konventionellen Kultur. Daher erfordert das IFC-Protokoll für Organoide zusätzliche Schritte, um eine ordnungsgemäße Verarbeitung und Einbettung in Paraffin für alle Organoide in die Proben zu gewährleisten. Wir beschreiben zusätzliche Schritte für einen Agarose-Voreinbettungsprozess und Tipps, um die Position von schnittförmigen Organoiden auf der Folie zu kennzeichnen, die die Erfolgsrate von IFC auf Organoiden erhöht, insbesondere wenn die Proben von Organoiden eine geringere Zelldichte als gewünscht aufweisen.

Protocol

Diese Studie wurde in strikter Übereinstimmung mit den Empfehlungen des Guide for the University of California San Diego (UCSD) Institutional Review Board (IRB) durchgeführt. IRB #090401 Die Zulassung wurde vom UCSD Institutional Review Board (IRB) erhalten, um chirurgische Proben von Patienten zu Forschungszwecken zu sammeln. Von jedem Patienten wurde eine informierte Einwilligung eingeholt und eine Probe für chirurgische Knochenprostatasierungen durch orthopädische Reparatur einer pathologischen Fraktur im Obersche…

Representative Results

3D-Organoide wurden erfolgreich aus einem vom Patienten abgeleiteten Xenograft(PDX)-Modell von Knochenmetastasierung Prostatakrebs (BMPC) sowie direkt aus patientenknochenmetastasischem Prostatakrebsgewebe(Abbildung 4) hergestellt. Kurz gesagt, unsere PDX-Modelle von BMPC wurden durch intrafemorale (IF) Injektion von Tumorzellen in männliche Rag2-/- c-/- Mäuse und dann PDX-Tumoren geerntet und verarbeitet, wie in diesem Manuskript beschrieben. Wie in <strong class="xf…

Discussion

3D-Organoide, die aus Patientenknochenmetastasen Prostatakrebszellen gewonnen werden, sind noch relativ selten. Hier beschreiben wir Strategien und weiter optimiertes Protokoll zu erfolgreich etablierten seriellen 3D-Patienten abgeleiteten Organoiden (PDOs) von BMPC. Darüber hinaus werden Protokolle beschrieben, um die Organoide in Proben mit geringerer Zelldichte für die IFC- und IHC-Analyse zu sichern. Differentialphäpnotypen in Form von Zysten, Sphäroiden und komplexeren Organoiden deuten darauf hin, dass dieses P…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Diese Studie wurde von der Leo and Anne Albert Charitable Foundation und der JM Foundation unterstützt. Wir danken den Mitgliedern des University of California San Diego Moores Cancer Center, Dr. Jing Yang und Dr. Kay T. Yeung, dass sie uns die Verwendung ihres Mikrotom und Randall French, Department of Surgery für technisches Know-how ermöglicht haben.

Materials

1 mL Pipettman Gilson F123602
1 mL Syringe BD Syringe 329654
1.5 mL tube Spectrum Lab Products 941-11326-ATP083
25G Needle BD PrecisionGlide Needle 305122
4% Paraformaldehyde (PFA) Alfa Aesar J61899
70% Ethanol (EtOH) VWR BDH1164-4LP
A83-01 Tocris Bioscience 2939
Accumax Innovative Cell Technologies, Inc. AM105
adDMEM Life Technologies 12634010
Agarose Lonza 50000
Antibody -for Cytokeratin 5 Biolegend 905901
Antibody for Cytokeratin 8 Biolegend 904801
B27 Life Technologies 17504044
Bioluminescence imaging system, IVIS 200 Perkin Elmer Inc IVIS 200
Cell Culture Plate – 24 well Costar 3524
Cell Culture Plate – 48 well Costar 3548
Cell Culture Plate – 6 well Costar 3516
Cell Dissociation Solution, Accumax Innovative Cell Technologies, Inc. AM105
Cell Recovery Solution Corning 354253
Cell Scraper Sarstedt 83.180
Cell Strainer Falcon (Corning) 352350
CO2 incubator Fisher Scientific 3546
DAPI Vector Vectashield H-1200
DHT Sigma-Aldrich D-073-1ML
dPBS Corning/Cellgro 21-031-CV
EGF PeproTech AF-100-15
FBS Gemini Bio-Products 100-106
FGF10 PeproTech 100-26
FGF2 PeproTech 100-18B
Forceps Denville Scientific S728696
Glutamax Gibco 35050-061
HEPES Gibco 15630-080
LS Columns Miltenyi 130-0420401
Magnetic Column Seperator: QuadroMACS Separator Miltenyi 130-090-976
Marker VWR 52877-355
Matrigel (Growth Factor Reduced) Mediatech Inc. (Corning) 356231
Matrigel (High Concentration) BD (Fisher Scientific) CB354248
Microscope Imaging Software, Keyence BZ-X800 (newest software) BZ-X700 (old software)
Microscope, Keyence BZ-X700 (model 2016-2017)/BZ-X710 (model 2018-2019)
Mouse Cell Depletion Kit Miltenyi 130-104-694
N-Acetylcysteine Sigma-Aldrich A9165-5G
Nicotinamide Sigma-Aldrich N0636-100G
Noggin PeproTech 120-10C
OCT Compound Tissue-Tek 4583
Parafilm American National Can N/A
Pen-Strep Mediatech Inc. (Corning) 30-002-CI-1
Pipette tipes for 1 mL (Blue Tips) Fisherbrand Redi-Tip 21-197-85
Plunger (from 3 mL syringe) BD Syringe 309657
Prostaglandin E2 Tocris Bioscience 2296
R-Spondin 1 Trevigen 3710-001-01
SB2021190 Sigma-Aldrich S7076-25MG
Small Table Top Centrifuge ThermoFisher Scientific 75002426
Water Bath Fisher Sci 2320
Y-27632 Dihydrochloride Abmole Bioscience M1817

Riferimenti

  1. Fatehullah, A., Tan, S. H., Barker, N. Organoids as an in vitro model of human development and disease. Nature Cell Biology. 18 (3), 246-254 (2016).
  2. Tushir, J. S., et al. Unregulated ARF6 activation in epithelial cysts generates hyperactive signaling endosomes and disrupts morphogenesis. Molecular Biology of the Cell. 21 (13), 2355-2366 (2010).
  3. Karthaus, W. R., et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159 (1), 163-175 (2014).
  4. McCray, T., Richards, Z., Marsili, J., Prins, G. S., Nonn, L. Handling and Assessment of Human Primary Prostate Organoid Culture. Journal of Visualized Experiments. (143), 59051 (2019).
  5. Drost, J., et al. Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols. 11 (2), 347-358 (2016).
  6. Gao, D., et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 159 (1), 176-187 (2014).
  7. Vlachogiannis, G., et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359 (6378), 920-926 (2018).
  8. Cheung, K. J., Gabrielson, E., Werb, Z., Ewald, A. J. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 155 (7), 1639-1651 (2013).
  9. Abou-Kheir, W. G., Hynes, P. G., Martin, P. L., Pierce, R., Kelly, K. Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten-/-TP53-/- prostate cancer model. Stem Cells. 28 (12), 2129-2140 (2010).
  10. Beshiri, M. L., et al. A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clinical Cancer Research. 24 (17), 4332-4345 (2018).
  11. Debnath, J., Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Reviews Cancer. 5 (9), 675-688 (2005).
  12. Lee, S. H., et al. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell. 173 (2), 515-528 (2018).
  13. Puca, L., et al. Patient derived organoids to model rare prostate cancer phenotypes. Nature Communications. 9 (1), 2404 (2018).
  14. Murrow, L. M., Weber, R. J., Gartner, Z. J. Dissecting the stem cell niche with organoid models: an engineering-based approach. Development. 144 (6), 998-1007 (2017).
  15. Neal, J. T., et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell. 175 (7), 1972-1988 (2018).
  16. Simmons, J. K., et al. Animal Models of Bone Metastasis. Veterinary Pathology. 52 (5), 827-841 (2015).
  17. Godebu, E., et al. PCSD1, a new patient-derived model of bone metastatic prostate cancer, is castrate-resistant in the bone-niche. Journal of Translational Medicine. 12, 275 (2014).
  18. . Keyence Fluorescence Microscope Available from: https://www.keyence.com/ss/products/microscope/bz-x/ (2019)
check_url/it/60367?article_type=t

Play Video

Citazione di questo articolo
Lee, S., Burner, D. N., Mendoza, T. R., Muldong, M. T., Arreola, C., Wu, C. N., Cacalano, N. A., Kulidjian, A. A., Kane, C. J., Jamieson, C. A. M. Establishment and Analysis of Three-Dimensional (3D) Organoids Derived from Patient Prostate Cancer Bone Metastasis Specimens and their Xenografts. J. Vis. Exp. (156), e60367, doi:10.3791/60367 (2020).

View Video