Summary

Ultrahurtig Tidsløst Nær-IR stimuleret Raman Målinger af funktionelle π-konjugatsystemer

Published: February 10, 2020
doi:

Summary

Nærmere oplysninger om signalgenerering og optimering, måling, dataindsamling og datahåndtering for en femtosekund tidsløst nær-IR stimuleret Raman spektrometer er beskrevet. En nær infrarød stimuleret Raman undersøgelse af ophidset-state dynamik β-caroten i toluen er vist som en repræsentativ ansøgning.

Abstract

Femtosekund tidsløst stimuleret Raman spektroskopi er en lovende metode til at observere den strukturelle dynamik kortlivede transienter med nær infrarøde (nær-IR) overgange, fordi det kan overvinde den lave følsomhed spontane Raman spektrometre i nær-IR-regionen. Her beskriver vi tekniske detaljer om en femtosekund tidsløst nær-IR multiplex stimuleret Raman spektrometer, at vi for nylig har udviklet. Der gives også en beskrivelse af signalgenerering og optimering, måling, dataindsamling og kalibrering og korrektion af registrerede data. Vi præsenterer en anvendelse af vores spektrometer til at analysere den ophidsede-state dynamik β-caroten i toluen løsning. En C = C stretch band af β-caroten i den næstlaveste ophidset singlet (S2)tilstand og den laveste ophidset singlet (S1)tilstand er klart observeret i den registrerede tidsløst stimuleret Raman spektre. Den femtosekund tidsløse nær-IR stimuleret Raman spektrometer gælder for den strukturelle dynamik π-konjugat systemer fra simple molekyler til komplekse materialer.

Introduction

Raman spektroskopi er et kraftfuldt og alsidigt værktøj til at undersøge molekylernes strukturer i en lang række prøver fra simple gasser, væsker og faste stoffer til funktionelle materialer og biologiske systemer. Raman spredning er væsentligt forbedret, når foton energi excitation lys falder sammen med den elektroniske overgang energi af et molekyle. ResonansRaman effekt gør det muligt for os selektivt at observere Raman spektrum af en art i en prøve, der består af mange slags molekyler. Near-IR elektroniske overgange trækker en masse opmærksomhed som en sonde til at undersøge ophidset-state dynamik molekyler med store π-konjugerede strukturer. Energien og levetiden for den laveste ophidsede singlet tilstand er blevet bestemt for flere carotenoider, som har en lang endimensional polyenkæde1,2,3. Dynamikken i neutrale og ladede excitationer er blevet grundigt undersøgt for forskellige fotoledende polymerer i film4,5,6,7, nanopartikler8, ogopløsninger 9,10,11. Detaljerede oplysninger om transienternes strukturer kan fås, hvis der anvendes tidsløst nær-IR Raman-spektroskopi på disse systemer. Kun få undersøgelser, dog, er blevet rapporteret om tidsløst nær-IR Raman spektroskopi12,13,14,15,16, fordi følsomheden af nær-IR Raman spektrometre er ekstremt lav. Den lave følsomhed stammer hovedsageligt fra den lave sandsynlighed for næsten-IR Raman spredning. Sandsynligheden for spontan Raman spredning er proportional med ωiωs3, hvor ωi og ωs er frekvenserne af excitation lys og Raman spredning lys, henholdsvis. Hertil kommer, kommercielt tilgængelige nær-IR detektorer har meget lavere følsomhed end CCD detektorer fungerer i UV og synlige områder.

Femtosekund tidsløst stimuleret Raman spektroskopi er opstået som en ny metode til at observere tidsafhængige ændringer af Raman aktive vibrationelle bånd ud over den tilsyneladende Fourier-transformer grænse for en laserpuls17,18,19,20,21,22,23,24,25,26,27,28 ,29,30,31,32,33. Stimuleret Raman spredning genereres ved bestråling af to laser impulser: Raman pumpe og sonde impulser. Her antages det, at Raman pumpepulsen har en større frekvens end sondepulsen. Når forskellen mellem frekvenserne af Raman-pumpen og sondeimpulserne falder sammen med hyppigheden af en Raman aktiv molekylær vibration, er vibrationen sammenhængende spændt for et stort antal molekyler i det bestrålede volumen. Ikke-lineær polarisering fremkaldt af den sammenhængende molekylære vibration forbedrer det elektriske felt af sondepulsen. Denne teknik er især kraftfuld til nær-IR Raman spektroskopi, fordi stimuleret Raman spredning kan løse problemet med følsomheden af tidsløst nær-IR spontanraman spektrometre. Stimuleret Raman spredning registreres som intensitet ændringer af sonden puls. Selv hvis en nær-IR detektor har en lav følsomhed, stimuleret Raman spredning vil blive opdaget, når sonden intensitet er tilstrækkeligt øget. Sandsynligheden for stimuleret Raman spredning er proportional med ωRPωSRS, hvor ωRP og ωSRS er frekvenserne af Raman pumpepuls og stimuleret Raman spredning, henholdsvis20. Frekvenserne til stimuleret Raman spredning, ωRP og ωSRS, svarer til ωi og ωs for spontan Raman spredning, hhv. Vi har for nylig udviklet en femtosekund tidsløst nær-IR Raman spektrometer ved hjælp af stimuleret Raman spredning til at undersøge strukturer og dynamik kortlivede transienter fotogenereret i π-konjugat systemer2,3,7,10. I denne artikel præsenterer vi de tekniske detaljer i vores femtosekund tidsløst nær-IR multiplex stimuleret Raman spektrometer. Optisk justering, erhvervelse af tidsløst stimuleret Raman spektre, og kalibrering og korrektion af registrerede spektre er beskrevet. Den ophidsede tilstanddynamik i β-caroten i toluenopløsning undersøges som en repræsentativ anvendelse af spektrometeret.

Protocol

1. Opstart af elektriske enheder Tænd femtosekund Ti: safir laser system i henhold til sin drift manual. Vent 2 timer på, at lasersystemet varmer op. Tænd for strømafbryderne på den optiske helikopter, de translationelle scenecontrollere, spektrografen, InGaAs-arraydetektoren og computeren, mens systemet varmer op. Fyld detektorens Dewar med flydende nitrogen. 2. Optisk justering af spektrometer Spejljustering (figur 1</stro…

Representative Results

Femtosekund tidsløst nær-IR stimuleret Raman spektroskopi blev anvendt til β-caroten i toluen opløsning. Koncentrationen af prøven var 1 x 10-4 mol dm-3. Prøven blev fotoophidset af den aktiniske pumpepuls ved 480 nm med en pulsenergi på 1 μJ. Tidsløst stimuleret Raman-spektre af β-caroten i toluen er vist i figur 2A. Den rå spektre indeholdt stærke Raman bands af opløsningsmiddel toluen og en svag Raman bånd af β-caroten i jorden tilstan…

Discussion

Afgørende faktorer i femtosekund tidsløst nær-IR multiplex stimuleret Raman måling
For at opnå tidsløst nær-IR stimuleret Raman spektre med et højt signal-til-støj-forhold, bør sondespektret ideelt set have ensartet intensitet i hele bølgelængdeområdet. Produktion af kontinuum med hvidt lys (afsnit 2.5) er derfor en af de mest afgørende dele af tidsløst nær-IR stimuleret Raman eksperimenter. Generelt bliver sondespektret bredt og fladt, efterhånden som intensiteten af hændelsesstrål…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af JSPS KAKENHI Grant Numbers JP24750023, JP24350012, MEXT KAKENHI Grant Numbers JP26104534, JP16H00850, JP26102541, JP16H00782 og MEXT-Supported Program for Strategic Research Foundation ved Private Universities, 2015-2019.

Materials

1-Axis Translational Stage OptSigma TSD-401S Products equivalent to this are used as well; for M22, L9, and CM in Figure 1A
20-cm Optical Delay Line OptSigma SGSP26-200 ODL1 in Figure 1A
3-Axis Translational Stage OptSigma TSD-405SL For L8 in Figure 1A
3-Axis Translational Stage Suruga Seiki B72-40C For FC in Figure 1A
5-cm Optical Delay Line PMT HRS-0050 ODL2 in Figure 1A
Al Concave Mirror Thorlabs CM254-050-G01 Focal length: 50 mm; CM in Figure 1A
Base Plate Suruga Seiki A21-6 Products equivalent to this are used as well; for M1-M32, BS1-BS3, L1-L10, I1-I17, P1-P2, HWP1-3, F1-F3, VND1-VND2, OC, BPF, HS, BBO, SP, CM, and FC in Figure 1A
BBO Crystal EKSMA Optics Type 1, θ = 23.2 deg; BBO in Figure 1A
BK7 Plano-Concave Lens OptSigma SLB-25.4-50NIR2 Focal length: 50 mm; IR anti-reflection coating; L6 in Figure 1A
BK7 Plano-Convex Lens OptSigma SLB-25.4-150PIR2 Focal length: 150 mm; IR anti-reflection coating; L2, L3, L5 in Figure 1A
BK7 Plano-Convex Lens OptSigma SLB-25.4-100PIR2 Focal length: 100 mm; IR anti-reflection coating; L4 in Figure 1A
BK7 Plano-Convex Lens OptSigma SLB-25.4-200PIR2 Focal length: 200 mm; IR anti-reflection coating; L7 in Figure 1A
Broadband Dielectric Mirror OptSigma TFMS-25.4C05-2/7 M22-M25, M28, M29 in Figure 1A
Broadband Dielectric Mirror Precision Photonics (Advanced Thin Films) M26, M27, M30-M32 in Figure 1A
Broadband Half-Wave Plate CryLight HWP3 in Figure 1A
Color Glass Filter HOYA IR85 F1 in Figure 1A
Color Glass Filter HOYA RM100 F2 in Figure 1A
Color Glass Filter Schott BG39 F3 in Figure 1A
Computer Dell Vostro 200 Mini Tower OS: Windows XP
Cyclohexane Kanto Kagaku 07547-1B HPLC grade
Data Analysis Software Wavemetrics Igor Pro 8
Dielectric Beamsplitter LAYERTEC Reflection : Transmission = 2 : 1; BS1 in Figure 1A
Dielectric Beamsplitter LAYERTEC Reflection : Transmission = 1 : 1; BS2, BS3 in Figure 1A
Dielectric Mirror Precision Photonics
(Advanced Thin Films)
M1-M8 in Figure 1A
Digital Oscilloscope Tektronix TDS3054B 500 MHz, 5 GS/s
Elastomer Tube Figure 1E
Femtosecond Ti:sapphire Oscillator Coherent Vitesse 800-2 Wavelength: 800 nm, pulse duration: 100 fs, average power: 280 mW, repetition rate: 80 MHz; included in Ti:S in Figure 1A
Femtosecond Ti:sapphire Regenerative Amplifier Coherent Legend-Elite-F-HE Wavelength: 800 nm, pulse duration: 100 fs, pulse energy: 3.5 mJ, repetition rate: 1 kHz; included in Ti:S in Figure 1A
Film Polarizer OptSigma SPFN-30C-26 P1 in Figure 1A
Glan-Taylor Prism OptSigma GYPB-10-10SN-3/7 P2 in Figure 1A
Gold Mirror OptSigma TFG-25C05-10 M9-M21 in Figure 1A
Half-Wave Plate OptSigma WPQ-7800-2M HWP1 in Figure 1A
Harmonic Separator Coherent TOPAS-C HRs 410-540 nm HS in Figure 1A
InGaAs Array Detector Horiba Symphony-IGA-512X1-50-1700-1LS 512 ch, Liquid nitrogen cooled
InGaAs PIN Photodiode Hamamatsu Photonics G10899-01K
IR Half-Wave Plate OptiSource HWP2 in Figure 1A
Iris Suruga Seiki F74-3N Products equivalent to this are used as well; I1-I17 in Figure 1A
Lens Holder OptSigma LHF-25.4S Products equivalent to this are used as well; for L1-L10 in Figure 1A
Magnetic Gear Pump Micropump 184-415
Mirror Mount Siskiyou IM100.C2M6R Products equivalent to this are used as well; for M1-M32, BS1-BS3, BBO, CM in Figure 1A
near-IR phosphor card Thorlabs VRC2
Nut Figure 1E, M4; purchased from a DIY store
Optical Chopper New Focus 3501 OC in Figure 1A
Optical Parametric Amplifier Coherent OPerA-F OPA1 in Figure 1A
Optical Parametric Amplifier Coherent TOPAS-C OPA2 in Figure 1A
Polarizer Holder OptSigma PH-30-ARS Products equivalent to this are used as well; for P1-P2 and HWP1-3 In Figure 1A
Polyfluoroacetate Tube Figure 1E
Post Holder OptSigma BRS-12-80 Products equivalent to this are used as well; for M1-M32, BS1-BS3, L1-L10, I1-I17, P1-P2, HWP1-3, F1-F3, VND1-VND2, OC, BPF, HS, BBO, SP, CM, and FC in Figure 1A
Quartz Flow Cell Tosoh Quartz T-70-UV-2 FC in Figure 1A
Quartz Plano-Concave Lens OptSigma SLSQ-25-50N Focal length: 50 mm; L8 in Figure 1A
Quartz Plano-Convex Lens OptSigma SLSQ-25-100P Focal length: 100 mm; L1, L9 in Figure 1A
Quartz Plano-Convex Lens OptSigma SLSQ-25-220P Focal length: 220 mm; L10 in Figure 1A
Sapphire Plate Pier Optics 3 mm thick; SP in Figure 1A
Si PIN Photodiode Hamamatsu Photonics S3883
Single Spectrograph Horiba Jobin Yvon iHR320 Focal length: 32 cm
Stainless Steel Rod Suruga Seiki A41-100 Products equivalent to this are used as well; for M1-M32, BS1-BS3, L1-L10, I1-I17, P1-P2, HWP1-3, F1-F3, VND1-VND2, OC, BPF, HS, BBO, SP, CM, and FC in Figure 1A
Stainless Steel Rod Newport J-SP-2 Figure 1E
Toluene Kanto Kagaku 40180-1B HPLC grade
U-Shaped Steel Plate Figure 1E; purchased from a DIY store
Variable Neutral Density Filter (with a holder) OptSigma NDHN-100 VND1 in Figure 1A
Variable Neutral Density Filter (with a holder) OptSigma NDHN-U100 VND2 in Figure 1A
Visual Programming Language National Instruments LabVIEW 2009 The control software in this study is programmed in LabVIEW 2009
Volume-Grating Bandpass Filter OptiGrate BPF-1190 BPF in Figure 1A
β-Carotene Wako Pure Chemical Industries 035-05531

Riferimenti

  1. Polívka, T., Herek, J. L., Zigmantas, D., Åkerlund, H. -. E., Sundström, V. Direct Observation of the (Forbidden) S1 State in Carotenoids. Proceedings of the National Academy of Sciences of the United States of America. 96 (9), 4914-4917 (1999).
  2. Takaya, T., Iwata, K. Relaxation Mechanism of β-Carotene from S2 (1Bu+) State to S1 (2Ag-) State: Femtosecond Time-Resolved Near-IR Absorption and Stimulated Resonance Raman Studies in 900-1550 nm Region. Journal of Physical Chemistry A. 118 (23), 4071-4078 (2014).
  3. Takaya, T., Anan, M., Iwata, K. Vibrational Relaxation Dynamics of β-Carotene and Its Derivatives with Substituents on Terminal Rings in Electronically Excited States as Studied by Femtosecond Time-Resolved Stimulated Raman Spectroscopy in the Near-IR Region. Physical Chemistry Chemical Physics. 20 (5), 3320-3327 (2017).
  4. Guo, J., Ohkita, H., Benten, H., Ito, S. Near-IR Femtosecond Transient Absorption Spectroscopy of Ultrafast Polaron and Triplet Exciton Formation in Polythiophene Films with Different Regioregularities. Journal of the American Chemical Society. 131 (46), (2009).
  5. Hwang, I. -. W., et al. Carrier Generation and Transport in Bulk Heterojunction Films Processed with 1,8-Octanedithiol as a Processing Additive. Journal of Applied Physics. 104 (3), 033706 (2008).
  6. Yonezawa, K., Kamioka, H., Yasuda, T., Han, L., Moritomo, Y. Fast Carrier Formation from Acceptor Exciton in Low-Gap Organic Photovoltaic. Applied Physics Express. 5 (4), 042302 (2012).
  7. Takaya, T., Enokida, I., Furukawa, Y., Iwata, K. Direct Observation of Structure and Dynamics of Photogenerated Charge Carriers in Poly(3-hexylthiophene) Films by Femtosecond Time-Resolved Near-IR Inverse Raman Spectroscopy. Molecules. 24 (3), 431 (2019).
  8. Clafton, S. N., Huang, D. M., Massey, W. R., Kee, T. W. Femtosecond Dynamics of Excitons and Hole-Polarons in Composite P3HT/PCBM Nanoparticles. Journal of Physical Chemistry B. 117 (16), 4626-4633 (2013).
  9. Cook, S., Furube, A., Katoh, R. Analysis of the Excited States of Regioregular Polythiophene P3HT. Energy & Environmental Science. 1 (2), 294-299 (2008).
  10. Okino, S., Takaya, T., Iwata, K. Femtosecond Time-Resolved Near-Infrared Spectroscopy of Oligothiophenes and Polythiophene: Energy Location and Effective Conjugation Length of Their Low-Lying Excited States. Chemistry Letters. 44 (8), 1059-1061 (2015).
  11. Takaya, T., Iwata, K. Development of a Femtosecond Time-Resolved Near-IR Multiplex Stimulated Raman Spectrometer in Resonance with Transitions in the 900-1550 nm Region. Analyst. 141 (14), 4283-4292 (2016).
  12. Jas, G. S., Wan, C., Johnson, C. K. Picosecond Time-Resolved Fourier Transform Raman Spectroscopy of 9,10-Diphenylanthracene in the Excited Singlet State. Applied Spectroscopy. 49 (5), 645-649 (1995).
  13. Jas, G. S., Wan, C., Kuczera, K., Johnson, C. K. Picosecond Time-Resolved Fourier-Transform Raman Spectroscopy and Normal-Mode Analysis of the Ground State and Singlet Excited State of Anthracene. Journal of Physical Chemistry. 100 (29), 11857-11862 (1996).
  14. Sakamoto, A., Okamoto, H., Tasumi, M. Observation of Picosecond Transient Raman Spectra by Asynchronous Fourier Transform Raman Spectroscopy. Applied Spectroscopy. 52 (1), 76-81 (1998).
  15. Sakamoto, A., Matsuno, S., Tasumi, M. Construction of Picosecond Time-Resolved Raman Spectrometers with Near-Infrared Excitation. Journal of Raman Spectroscopy. 37 (1-3), 429-435 (2006).
  16. Sakamoto, A., Matsuno, S., Tasumi, M. Picosecond Near-Infrared Excited Transient Raman Spectra of β-Carotene in the Excited S2 State: Solvent Effects on the in-Phase C=C Stretching Band and Vibronic Coupling. Journal of Molecular Structure. 976 (1-3), 310-313 (2010).
  17. Yoshizawa, M., Kurosawa, M. Femtosecond Time-Resolved Raman Spectroscopy Using Stimulated Raman Scattering. Physical Review A. 61 (1), 013808 (2000).
  18. Yoshizawa, M., Kubo, M., Kurosawa, M. Ultrafast Photoisomerization in DCM Dye Observed by New Femtosecond Raman Spectroscopy. Journal of Luminescence. 87-89, 739-741 (2000).
  19. Yoshizawa, M., Aoki, H., Hashimoto, H. Vibrational Relaxation of the 2Ag– Excited State in All-Trans-β-Carotene Obtained by Femtosecond Time-Resolved Raman Spectroscopy. Physical Review B. 63 (18), 180301 (2001).
  20. McCamant, D. W., Kukura, P., Mathies, R. A. Femtosecond Broadband Stimulated Raman: A New Approach for High-Performance Vibrational Spectroscopy. Applied Spectroscopy. 57 (11), 1317-1323 (2003).
  21. McCamant, D. W., Kukura, P., Yoon, S., Mathies, R. A. Femtosecond Broadband Stimulated Raman Spectroscopy: Apparatus and Methods. Review of Scientific Instruments. 75 (11), 4971-4980 (2004).
  22. Kukura, P., McCamant, D. W., Mathies, R. A. Femtosecond Stimulated Raman Spectroscopy. Annual Review of Physical Chemistry. 58, 461-488 (2007).
  23. Laimgruber, S., Schachenmayr, H., Schmidt, B., Zinth, W., Gilch, P. A Femtosecond Stimulated Raman Spectrograph for the Near Ultraviolet. Applied Physics B. 85 (4), 557-564 (2006).
  24. Umapathy, S., Lakshmanna, A., Mallick, B. Ultrafast Raman Loss Spectroscopy. Journal of Raman Spectroscopy. 40 (3), 235-237 (2009).
  25. Mallick, B., Lakshmanna, A., Umapathy, S. Ultrafast Raman Loss Spectroscopy (URLS): Instrumentation and Principle. Journal of Raman Spectroscopy. 42 (10), 1883-1890 (2011).
  26. Kloz, M., van Grondelle, R., Kennis, J. T. M. Wavelength-Modulated Femtosecond Stimulated Raman Spectroscopy-Approach towards Automatic Data Processing. Physical Chemistry Chemical Physics. 13 (40), 18123-18133 (2011).
  27. Kloz, M., Weißenborn, J., Polívka, T., Frank, H. A., Kennis, J. T. M. Spectral Watermarking in Femtosecond Stimulated Raman Spectroscopy: Resolving the Nature of the Carotenoid S* State. Physical Chemistry Chemical Physics. 18 (21), 14619-14628 (2016).
  28. Kuramochi, H., Takeuchi, S., Tahara, T. Ultrafast Structural Evolution of Photoactive Yellow Protein Chromophore Revealed by Ultraviolet Resonance Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry Letters. 3 (15), 2025-2029 (2012).
  29. Wang, S., et al. Dynamic High Pressure Induced Strong and Weak Hydrogen Bonds Enhanced by Pre-Resonance Stimulated Raman Scattering in Liquid Water. Optics Express. 25 (25), 31670-31677 (2017).
  30. Ashner, M. N., Tisdale, W. A. High Repetition-Rate Femtosecond Stimulated Raman Spectroscopy with Fast Acquisition. Optics Express. 26 (14), 18331-18340 (2018).
  31. Quincy, T. J., Barclay, M. S., Caricato, M., Elles, C. G. Probing Dynamics in Higher-Lying Electronic States with Resonance-Enhanced Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry A. 122 (42), 8308-8319 (2018).
  32. Taylor, M. A., et al. Delayed Vibrational Modulation of the Solvated GFP Chromophore into a Conical Intersection. Physical Chemistry Chemical Physics. 21 (19), 9728-9739 (2019).
  33. Cassabaum, A. A., Silva, W. R., Rich, C. C., Frontiera, R. R. Orientation and Polarization Dependence of Ground- and Excited-State FSRS in Crystalline Betaine-30. Journal of Physical Chemistry C. 123 (20), 12563-12572 (2019).
  34. Hamaguchi, H., Iwata, K. . Raman Spectroscopy (The Spectroscopical Society of Japan, Spectroscopy Series 1). , (2015).
  35. Hashimoto, H., Koyama, Y. The C=C Stretching Raman Lines of β-Carotene Isomers in the S1 State as Detected by Pump-Probe Resonance Raman Spectroscopy. Chemical Physics Letters. 154 (4), 321-325 (1989).
  36. Noguchi, T., Hayashi, H., Tasumi, M., Atkinson, G. H. Solvent Effects on the ag C=C Stretching Mode in the 21Ag- Excited State of β-Carotene and Two Derivatives: Picosecond Time-Resolved Resonance Raman Spectroscopy. Journal of Physical Chemistry. 95 (8), 3167-3172 (1991).
check_url/it/60437?article_type=t

Play Video

Citazione di questo articolo
Takaya, T., Iwata, K. Ultrafast Time-resolved Near-IR Stimulated Raman Measurements of Functional π-conjugate Systems. J. Vis. Exp. (156), e60437, doi:10.3791/60437 (2020).

View Video