Summary

利用过渡金属催化的酮的微波辅助直接异化

Published: February 16, 2020
doi:

Summary

杂性化合物是有机合成、药用和生物化学中的重要分子。微波辅助异质化,使用铂催化提供了一种快速而有效的方法,将异丙烯基直接附着在酮基材上。

Abstract

异质化将异位基片段引入有机分子。尽管通过过渡金属催化报告有无数关于直接异化的可有反应,但关于直接异质化的文献很少。由于催化剂中毒、产物分解等异质原子的存在,异质化常常使异化成为一个具有挑战性的研究领域,包括催化剂中毒、产物分解等。该协议详细介绍了在微波辐照下酮的高效直接β-C(sp3)异射。成功异质化的关键因素包括使用XPhos PalladacycleGen 4催化剂、过量碱以抑制侧反应以及微波照射下密封反应小瓶中实现的高温和压力。该方法制备的异质化化合物具有质子核磁共振光谱(1H NMR)、碳核磁共振光谱(13CNMR)和高分辨率质谱(HRMS)等特征。该方法与文献先例具有若干优点,包括广泛的基底范围、快速反应时间、更环保的程序和操作简便性,消除了硅醇醚等中间体的制备。该协议的可能应用包括但不限于用于发现生物活性小分子的以多样性为导向的合成、用于制备天然产物的多米诺骨牌合成以及用于新过渡金属催化系统的配体开发。

Introduction

微波通过离子传导或双极极极化与材料相互作用,提供快速均匀的加热。微波辅助有机反应自1986年首次报告快速有机合成报告后,在研究实验室中越来越受欢迎。虽然微波加热的确切性质尚不明确,而且”非热”微波效应的存在仍在争论之中,但已观察到微波辅助有机反应的显著速率增强,并报道了2。据报道,在微波照射,通常需要数小时或数天才能完成的缓慢反应,在几分钟内完成。据报告,在微波照射下,需要高活化能量(如循环和进行固菌阻碍的场址结构)的困难有机反应是成功的,反应产量和纯度提高7。微波辅助有机合成结合无溶剂反应和多米诺骨牌反应等其他特性,在环保反应设计方面具有无可比拟的优势。

与被广泛研究的基质等价物不同,异质化,特别是在碳基化合物的β-C(sp3)上,在文献中很少报道少数关于碳基化合物α-异质化的文献报告具有很大的局限性,如催化剂的化学计量量、狭窄的基质范围和反应中间体的分离11、12、13。酮子的直接异质化仍有待解决,以便使其成为一种通用方法。首先,异原子倾向于协调过渡金属催化剂,导致催化剂中毒14,15。其次,单体(异质)消融产物中的β-H比起始材料中的β-H更酸性。因此,它倾向于进一步反应,使不需要的(双食)内化或(多角质)内化产物。第三,碳基化合物的成本通常低于二甲基化合物,因此使用多余的碳基化合物来推动反应完成是切实可行的。然而,过量的碳基化合物往往会导致自冷凝,这是碳基化合物过渡金属催化+异化中经常遇到的一个问题。

在这份报告中,我们描述了我们最近对使用微波辅助反应方案直接β-C(sp3)酮异化的研究。为了应对第一个挑战,上面讨论的催化剂中毒,使用强协调和消毒阻碍配体,以尽量减少异原子的催化剂中毒。大块的配体也有望减缓侧反应,如(双流)内化或(多角质)16,17,上述第二个挑战。为了尽量减少第三个挑战的影响,形成酮自冷凝侧产品,采用了2个以上等价的碱基,将酮转化为相应的依有物。反应时间长、反应温度高,加上酮子直接β-C(sp3)异质化的挑战,使其成为微波辅助有机合成研究的合适人选。

Protocol

谨慎: 对于配备 4 x 24MG5 转子的微波反应器,微波反应小瓶应在 20 bar 下运行。如果反应使用非常挥发性的溶剂,产生气体,或者如果溶剂分解,有必要计算压力在某些反应温度下,以确保小瓶的总压力小于20巴。 本议定书采用手套箱、闪式色谱和核磁共振(NMR)有机合成的标准技术。 实验期间应使用适当的个人防护设备 (PPE)。其中包括安全护目镜、实验室外套、单体?…

Representative Results

可采用这种高效的微波辅助协议,对酮的直接β-C(sp3)异质化进行。本研究中合成的杂酮的选定示例如图1所示。具体来说,化合物1a被合成并分离为淡黄色油(0.49毫摩尔,192毫克,98%)。其1H 和13C NMR 光谱如图2所示,用于确认结构和纯度。在 1H 频谱中存在双质子单一信号 ± 4.26 ppm,证实了酮 + 碳和杂基卤化物之?…

Discussion

本文描述的方法是为了获取有价值的合成基块 – 异丙基化合物。与异质化的先例文献报告相比,目前这种催化系统的选择显示出几个显著的优势。首先,它避免了保护组的使用、反应中间体的分离、催化剂的化学测量要求以及延长反应时间11、17。其次,SiC板为以多样性为导向的药物发现提供并行合成的大好机会19。理论上,在微波照?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

向美国化学学会石油研究基金的捐赠者表示认可,以支持这项研究(PRF# 54968-UR1)。这项工作也得到了国家科学基金会(CHE-1760393)的支持。我们感谢NKU科学与数学一体化中心、NKU-STEM国际研究计划以及化学和生物化学系在财政和后勤方面的支持。我们还感谢伊利诺伊大学厄巴纳-香槟分校化学科学学院质谱实验室获得HRMS数据。

Materials

Chloroform-d (99.8+% atome D) Acros Organics AC209561000 contains 0.03 v/v% TMS
CombiFlash Rf Flash Chromatography system Teledyne Isco automated flash chromatography system
CombiFlash Solid load catridges (5 gram) Teledyne Isco 69-3873-235 disposable
CombiFlash prepacked column (4g) Teledyne Isco 69-2203-304 RediSep Rf silica 40-60 um, disposable
Microwave Reactor – Multiwave Pro Anton Paar 108041 Microwave Reactor
Microwave Reactor Rotor 4X24 MG5 Anton Paar 79114 for parallel organic synthesis with with 4 SiC Well Plate 24
Microwave reaction vials Wheaton® glass 224882 disposible, 13-425, 15×46 mm, reaction solution 0.3 – 3.0 mL, working pressure 20 bar
Microwave reaction vial seals, set Anton Paar 41186 made of Teflon; disposable
Microwave reaction vial screw cap Anton Paar 41188 made of PEEK; forever reusable
Microwave reaction vial stirring bar CTechGlass S00001-0000 Magnetic, PTFE, Length 9mm. Diameter: 3mm. (Package of 5)
NaOtBu Sigma-Aldrich 703788 stored in a glovebox under nitrogen atmosphere
Nuclear Magnetic Resonance Spectrometer Joel 500 MHz spectrometer
Silica gel Teledyne Isco 605394478 40-60 microns, 60 angstroms
Toluene Sigma-Aldrich 244511 vigorously purged with argon for 2 h before use
XPhos Palladacycle Gen. 4 Catalyst STREM 46-0327 stored in a glovebox under nitrogen atmosphere
various ketones Sigma-Aldrich or Fisher or Ark Pharm. substrates for heteroarylation
various heteroaryl halides Sigma-Aldrich or Fisher or Ark Pharm. substrates for heteroarylation

Riferimenti

  1. Gedye, R. The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters. 27 (3), 279-282 (1986).
  2. Garbacia, S., Desai, B., Lavastre, O., Kappe, C. O. Microwave-Assisted Ring-Closing Metathesis Revisited. On the Question of the Nonthermal Microwave Effect. The Journal of Organic Chemistry. 68 (23), 9136-9139 (2003).
  3. Amato, E., et al. Investigation of fluorinated and bifunctionalized 3-phenylchroman-4-one (isoflavanone) aromatase inhibitors. Bioorganic & Medicinal Chemistry. 22 (1), 126-134 (2014).
  4. Bonfield, K., et al. Development of a new class of aromatase inhibitors: Design, synthesis and inhibitory activity of 3-phenylchroman-4-one (isoflavanone) derivatives. Bioorganic & Medicinal Chemistry. 20 (8), 2603-2613 (2012).
  5. Yılmaz, F., Mentese, E. A Rapid Protocol for the Synthesis of N-[2-(alkyl/aryl)-4-phenyl-1Himidazol-1-yl] benzamides via Microwave Technique. Current Microwave Chemistry. 1 (1), 47-51 (2014).
  6. Xia, Y., Chen, L. Y., Lv, S., Sun, Z., Wang, B. Microwave-Assisted or Cu-NHC-Catalyzed Cycloaddition of Azido-Disubstituted Alkynes: Bifurcation of Reaction Pathways. The Journal of Organic Chemistry. 79 (20), 9818-9825 (2014).
  7. Lei, C., Jin, X., Zhou, J. S. Palladium-Catalyzed Heteroarylation and Concomitant ortho-Alkylation of Aryl Iodides. Angewandte Chemie International Edition. 54 (45), 13397-13400 (2015).
  8. Muratake, H., Hayakawa, A., Nataume, M. A Novel Phenol-Forming Reaction for Preparation of Benzene, Furan, and Thiophene Analogs of CC-1065/Duocarmycin Pharmacophores. Tetrahedron Letters. 38 (43), 7577 (1997).
  9. Viciu, M. S., Germaneau, R. F., Nolan, S. P. Well-Defined, Air-Stable (NHC)Pd(Allyl)Cl (NHC=N-Heterocyclic Carbene) Catalysts for the Arylation of Ketones. Organic Letters. 23 (4), 4053-4056 (2002).
  10. Biscoe, M. R., Buchwald, S. L. Selective Monoarylation of Acetate Esters and Aryl Methyl Ketones Using Aryl Chlorides. Organic Letters. 11 (8), 1773-1775 (2009).
  11. Chobanian, H. R., Liu, P., Chioda, M. D., Guo, Y., Lin, L. S. A facile, microwave-assisted, palladium-catalyzed arylation of acetone. Tetrahedron Letters. 48 (7), 1213-1216 (2007).
  12. Amat, M., Hadida, S., Pshenichnyi, G., Bosch, J. Palladium(0)-Catalyzed Heteroarylation of 2- and 3-Indolylzinc Derivatives. An Efficient General Method for the Preparation of (2-Pyridyl)indoles and Their Application to Indole Alkaloid Synthesis. The Journal of Organic Chemistry. 62 (10), 3158-3175 (1997).
  13. Tennant, G. J., Wallis, C. W., Weaver C, G. Synthesis of the first examples of the imidazo[4,5-c]isoxazole ring system. Journal of the Chemical Society, Perkin Transactions. 1, 817-826 (1999).
  14. Spergel, S. H., Okoro, D. R., Pitts, W. One-Pot Synthesis of Azaindoles via Palladium-Catalyzed α-Heteroarylation of Ketone Enolates. The Journal of Organic Chemistry. 75 (15), 5316-5319 (2010).
  15. Jiang, Y., Liang, G., Zhang, C., Loh, T. P. Palladium-Catalyzed C-S Bond Formation of Stable Enamines with Arene/Alkanethiols: Highly Regioselective Synthesis of β-Amino Sulfides. European Journal of Organic Chemistry. 2016 (20), 3326-3330 (2016).
  16. King, S. M., Buchwald, S. L. Development of a Method for the N-Arylation of Amino Acid Esters with Aryl Triflates. Organic Letters. 18 (16), 4128-4131 (2016).
  17. Ge, S., Hartwig, J. F. Nickel-catalyzed asymmetric alpha-arylation and heteroarylation of ketones with chloroarenes: effect of halide on selectivity, oxidation state, and room-temperature reactions. The Journal of the American Chemical Society. 133 (41), 16330-16333 (2011).
  18. Quillen, A., et al. Palladium-Catalyzed Direct α-C(sp3) Heteroarylation of Ketones under Microwave Irradiation. The Journal of Organic Chemistry. 84 (12), 7652-7663 (2019).
  19. Kremsner, J. M., Kappe, C. O. Silicon Carbide Passive Heating Elements in Microwave-Assisted Organic Synthesis – SI. The Journal of Organic Chemistry. 71 (12), 4651-4658 (2006).
  20. Erythropel, H. C., et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry. 20 (9), 1929-1961 (2018).
  21. Barge, A., Tagliapietra, S., Tei, L., Cintas, P., Cravotto, G. Pd-catalyzed reactions promoted by ultrasound and/or microwave irradiation. Current Organic Chemistry. 12 (18), 1588-1612 (2008).
  22. Kimura, M., Mukai, R., Tanigawa, N., Tanaka, S., Tamaru, Y. Triethylborane as an efficient promoter for palladium-catalyzed allylation of active methylene compounds with allyl alcohols. Tetrahedron. 59 (39), 7767-7777 (2003).
check_url/it/60441?article_type=t

Play Video

Citazione di questo articolo
Rosen, A., Lindsay, K., Quillen, A., Nguyen, Q., Neiser, M., Ramirez, S., Costan, S., Johnson, N., Do, T. D., Ma, L. A Microwave-Assisted Direct Heteroarylation of Ketones Using Transition Metal Catalysis. J. Vis. Exp. (156), e60441, doi:10.3791/60441 (2020).

View Video