Summary

大鼠胡萝卜动脉压力控制段气球损伤与腹腔ventit 治疗应用

Published: July 09, 2020
doi:

Summary

大鼠胡萝卜动脉气球损伤模仿临床血管成形术,以恢复动脉粥样硬化血管的血液流动。该模型通过松开动脉壁和破坏内皮细胞的刺激层来诱导动脉损伤反应,最终导致重塑和刺激性高塑性反应。

Abstract

心血管疾病仍然是全世界死亡和残疾的主要原因,部分原因是动脉粥样硬化。动脉粥样硬化斑块缩小了动脉的光泽表面区域,从而减少了流向器官和分膜组织的充足血液。临床上,重新血管化程序,如气球血管成形术有或没有支架放置旨在恢复血液流动。虽然这些程序通过减少斑块负担来重建血液流动,但它们会损坏血管壁,从而启动动脉愈合反应。长期愈合反应导致动脉恢复,或重新缩小,最终限制这些血管化程序的长期成功。因此,前科动物模型是分析驱动恢复的病理生理机制的组成部分,为测试新的治疗策略提供了机会。与大型动物模型相比,Murine 模型更便宜、更容易操作。气球或电线损伤是穆林模型中常用的两种伤害模式。气球损伤模型特别模仿临床血管成形术,对动脉造成足够的损伤,以发展恢复性。在这里,我们描述了手术细节的性能和组理分析修改,压力控制大鼠胡萝卜动脉气球损伤模型。此外,此协议还突出了治疗药物的局部近心应用如何用于抑制新皮质增生。最后,我们提出光片荧光显微镜作为成像和可视化动脉损伤的三维新方法。

Introduction

心血管疾病(CVD)仍然是全球的主要死因动脉粥样硬化是大多数 CVD 相关发病率和死亡率的根本原因。动脉粥样硬化是动脉内斑块的积累,导致流明变窄,妨碍器官和脱血组织2的适当血液注入。治疗严重动脉粥样硬化的临床干预措施包括带支架或不放置的气球血管成形术。这种干预包括将气球导管推进到斑块的部位,并充气气球将斑块压缩到动脉壁上,扩大发光区域。然而,这一程序损害了动脉,导致动脉损伤反应3。这种损伤反应的长时间激活导致动脉恢复,或重新缩小,辅之以新皮质增生和血管重塑。在血管成形术中,刺激层被内皮细胞破坏,导致立即血小板吸收和局部炎症。局部信号诱导血管平滑肌肉细胞(VSMC)和冒险成纤维细胞的表型变化。这导致VSMC和成纤维细胞向内迁移和扩散到流明,导致新金体增生4,5。循环的祖细胞和免疫细胞也有助于恢复体积6。在适用的情况下,药物疏松支架(DES)是目前抑制重生7的标准。然而,DES抑制动脉再内皮化,从而创造一个亲血栓形成的环境,可能导致后期支架血栓形成8。因此,动物模型对于了解再造病的病理生理学,以及开发更好的治疗策略以延长再血管化程序的疗效都是不可或缺的。

几个大小动物模型9被用于研究这种病理学。其中包括动脉发光侧的气球损伤3、10或线伤11,以及动脉周围的部分粘合12或袖口放置13。气球和电线损伤都使动脉内皮层凹陷,模仿血管成形术后的临床情况。特别是,气球损伤模型使用与临床环境类似的工具(即气球导管)。气球损伤最好在大鼠模型中执行,因为大鼠动脉适合市售气球导管。在这里,我们描述了一个压力控制的段动脉损伤,一个成熟的,修改版本的老鼠胡萝卜动脉气球损伤。这种压力控制的方法密切模仿临床血管成形术,并允许可重复的新生儿增生形成两周后受伤14,15。此外,这种压力控制的动脉损伤导致完全内皮层恢复2周后手术16。这直接对比了最初的气球损伤模型,由Clowes描述,其中内皮层永远不会回到全覆盖3。

手术后,可以通过多种方法对受伤的动脉进行治疗或针对受伤动脉。此处描述的方法使用嵌入在多音压凝胶溶液中的小分子的间接应用。具体来说,我们应用100μM肉碱醛溶液在25%的普鲁罗尼-F127凝胶到动脉受伤后立即抑制新皮质增生形成15。多音速-F127是一种无毒、可热可逆的凝胶,能够以受控的方式在当地输送药物同时,动脉损伤是局部的,因此地方管理允许测试一个积极的原则,同时尽量减少偏离目标的影响。然而,使用这种方法进行治疗的有效交付将取决于所使用的小分子或生物的化学成分。

Protocol

这里描述的所有方法都得到了北卡罗来纳大学教堂山分校机构动物护理和使用委员会(IACUC)的批准。 1. 术前程序 消毒手术器械。手术前自动切除所有手术器械。如果在同一天进行多次手术,则使用干珠消毒器在手术之间对仪器进行消毒。 在25%的普鲁罗尼-127凝胶(在无菌蒸馏水中稀释)中准备治疗。 设置一个2F Fogarty气球导管到充气器,并将导管的气?…

Representative Results

图 1显示了用于执行此手术的所有材料和手术工具。两周受伤的动脉横截面的血氧素和欧辛 (H&E) 染色允许新脑增生的清晰可视化。图 2显示了健康、受伤和经过治疗的动脉的 H&E 染色动脉横截面的代表性图像。图2还概述了如何使用广泛使用的图像处理软件ImageJ来量化受伤动脉的新生儿增生水平。使用此方法,可追踪到新膜的周?…

Discussion

大鼠胡萝卜素动脉气球损伤是最广泛使用和研究的恢复动物模型之一。原来的气球损伤模型3和修改的压力控制段损伤变异10都告诉了许多方面,动脉损伤的反应也发生在人类身上,少数限制是富含纤维素的血栓很少发展,局部炎症是最小的相比,其他伤害模型,如在高胆固醇兔子或猪模型9,22。老鼠也可以在不同的?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

N.E.B由国家环境卫生科学研究所(2018年5T32ES007126-35)和美国心脏协会博士前奖学金(20PRE35120321)提供的培训补助金支持。E.S..M.B是一名KL2学者,部分得到UNC临床和转化科学奖-K12学者计划(KL2TR002490,2018)和国家心肺血液研究所(K01HL145354)的支持。作者感谢联合国军国署显微镜服务实验室的巴勃罗·阿里尔博士协助LSFM。光片荧光显微镜在显微镜服务实验室进行。病理学和实验室医学部显微镜服务实验室部分由P30 CA016086癌症中心向UNC Lineberger综合癌症中心提供核心支持赠款。

Materials

1 mL Syringe Fisher 14955450
1 mL Syringe with needle BD 309626
2 French Fogarty Balloon Embolectomy Catheter Edwards LifeSciences 120602F
4-0 Ethilon (Nylon) Suture Ethicon Inc 662H
4-0 Vicryl Suture Ethicon Inc J214H
7-0 Prolene Suture Ethicon Inc 8800H
70% ethyl alcohol
Anti-Rabbit Alexa Fluor 647 Thermo Fisher Scientific A21245
Atropine Sulfate Vedco Inc for veterinary use
Cotton Swabs Puritan 806-WC
Curved Hemostats Fine Science Tools 13009-12
Fine Curved Forceps Fine Science Tools 11203-25
Fine Scissors Fine Science Tools 14090-11
Gauze Covidien 2252
IHC-Tek Diluent (pH 7.4) IHC World IW-1000
Insufflator Merit Medical IN4130
Iodine solution
Lubricating Eye Ointment Dechra for veterinary use
Mayo Scissors Fine Science Tools 14010-15
Micro Serrefines Fine Science Tools 18055-05
Microdissection Scissors Fine Science Tools 15004-08
Micro-Serrefine Clamp Applying Forceps Fine Science Tools 18057-14
Needle Holder Fine Science Tools 12003-15
Pluronic-127 (diluted in sterile water) Sigma-Aldrich P2443 25% prepared
Rabbit Anti-CD31 Abcam ab28364
Retractor Bent paper clips work well
Rimadyl (Carprofen) Zoetis Inc for veterinary use
Saline solution
Standard Forceps Fine Science Tools 11006-12
Sterile Drape Dynarex 4410
T-Pins

Riferimenti

  1. American Heart Association. Cardiovascular Disease: A Costly Burden for America, Projections Through 2035. American Heart Association CVD Burden Report. , (2017).
  2. Singh, R. B., Mengi, S. A., Xu, Y. J., Arneja, A. S., Dhalla, N. S. Pathogenesis of atherosclerosis: A multifactorial process. Experimental and Clinical Cardiology. 7 (1), 40-53 (2002).
  3. Clowes, A. W., Reidy, M. A., Clowes, M. M. Mechanisms of stenosis after arterial injury. Laboratory Investigation. 49 (2), 208-215 (1983).
  4. Clowes, A. W., Reidy, M. A., Clowes, M. M. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Laboratory Investigation. 49 (3), 327-333 (1983).
  5. Sartore, S., et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circulation Research. 89 (12), 1111-1121 (2001).
  6. Tanaka, K., et al. Circulating progenitor cells contribute to neointimal formation in nonirradiated chimeric mice. The FASEB Journal. 22 (2), 428-436 (2008).
  7. Henry, M., et al. Carotid angioplasty and stenting under protection. Techniques, results and limitations. The Journal of Cardiovascular Surgery. 47 (5), 519-546 (2006).
  8. Kounis, N. G., et al. Thrombotic responses to coronary stents, bioresorbable scaffolds and the Kounis hypersensitivity-associated acute thrombotic syndrome. Journal of Thoracic Disease. 9 (4), 1155-1164 (2017).
  9. Jackson, C. L. Animal models of restenosis. Trends in Cardiovascular Medicine. 4 (3), 122-130 (1994).
  10. Shears, L. L., et al. Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. Journal of the American College of Surgeons. 187 (3), 295-306 (1998).
  11. Takayama, T., et al. A murine model of arterial restenosis: technical aspects of femoral wire injury. Journal of Visualized Experiments. (97), (2015).
  12. Zhang, L. N., Parkinson, J. F., Haskell, C., Wang, Y. X. Mechanisms of intimal hyperplasia learned from a murine carotid artery ligation model. Current Vascular Pharmacology. 6 (1), 37-43 (2008).
  13. Jahnke, T., et al. Characterization of a new double-injury restenosis model in the rat aorta. Journal of Endovascular Therapy. 12 (3), 318-331 (2005).
  14. Gregory, E. K., et al. Periadventitial atRA citrate-based polyester membranes reduce neointimal hyperplasia and restenosis after carotid injury in rats. American Journal of Physiology-Heart and Circulatory Physiology. 307 (10), 1419-1429 (2014).
  15. Buglak, N. E., Jiang, W., Bahnson, E. S. M. Cinnamic aldehyde inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia in Zucker Diabetic Fatty rats. Redox Biology. 19, 166-178 (2018).
  16. Bahnson, E. S., et al. Long-term effect of PROLI/NO on cellular proliferation and phenotype after arterial injury. Free Radical Biology and Medicine. 90, 272-286 (2016).
  17. Gilbert, J. C. W., Davies, M. C., Hadgraft, J. The behaviour of Pluronic F127 in aqueous solution studied using fluorescent probes. International Journal of Pharmaceutics. 40 (1-2), 93-99 (1987).
  18. Tulis, D. A. Histological and morphometric analyses for rat carotid balloon injury model. Methods in Molecular Medicine. 139, 31-66 (2007).
  19. Buglak, N. E., et al. Light Sheet Fluorescence Microscopy as a New Method for Unbiased Three-Dimensional Analysis of Vascular Injury. Cardiovascular Research. , (2020).
  20. Renier, N., et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 159 (4), 896-910 (2014).
  21. Ariel, P. . UltraMicroscope II – A User Guide. , (2018).
  22. Touchard, A. G., Schwartz, R. S. Preclinical restenosis models: challenges and successes. Toxicologic Pathology. 34 (1), 11-18 (2006).
  23. Xiangdong, L., et al. Animal models for the atherosclerosis research: a review. Protein Cell. 2 (3), 189-201 (2011).
  24. Chen, H., Li, D., Liu, M. Novel Rat Models for Atherosclerosis. Journal of Cardiology and Cardiovascular Sceinces. 2 (2), 29-33 (2018).
  25. Xing, D., Nozell, S., Chen, Y. F., Hage, F., Oparil, S. Estrogen and mechanisms of vascular protection. Arteriosclerosis, Thrombosis, and Vascular Biology. 29 (3), 289-295 (2009).
  26. Tulis, D. A. Rat carotid artery balloon injury model. Methods in Molecular Medicine. 139, 1-30 (2007).
  27. Pellet-Many, C., et al. Neuropilins 1 and 2 mediate neointimal hyperplasia and re-endothelialization following arterial injury. Cardiovascular Research. 108 (2), 288-298 (2015).
  28. Wu, B., et al. Perivascular delivery of resolvin D1 inhibits neointimal hyperplasia in a rat model of arterial injury. Journal of Vascular Surgery. 65 (1), 207-217 (2017).
  29. Tan, J., Yang, L., Liu, C., Yan, Z. MicroRNA-26a targets MAPK6 to inhibit smooth muscle cell proliferation and vein graft neointimal hyperplasia. Scientific Reports. 7, 46602 (2017).
  30. Pearce, C. G., et al. Beneficial effect of a short-acting NO donor for the prevention of neointimal hyperplasia. Free Radical Biology and Medicine. 44 (1), 73-81 (2008).
  31. Cao, T., et al. S100B promotes injury-induced vascular remodeling through modulating smooth muscle phenotype. Biochimica et Biophysica Acta – Molecular Basis of Disease. 1863 (11), 2772-2782 (2017).
  32. Madigan, M., Entabi, F., Zuckerbraun, B., Loughran, P., Tzeng, E. Delayed inhaled carbon monoxide mediates the regression of established neointimal lesions. Journal of Vascular Surgery. 61 (4), 1026-1033 (2015).
  33. Khurana, R., et al. Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation. 110 (16), 2436-2443 (2004).
  34. Tsihlis, N. D., Vavra, A. K., Martinez, J., Lee, V. R., Kibbe, M. R. Nitric oxide is less effective at inhibiting neointimal hyperplasia in spontaneously hypertensive rats. Nitric Oxide. 35, 165-174 (2013).
  35. Chen, J., et al. Inhibition of neointimal hyperplasia in the rat carotid artery injury model by a HMGB1 inhibitor. Atherosclerosis. 224 (2), 332-339 (2012).
  36. Mano, T., Luo, Z., Malendowicz, S. L., Evans, T., Walsh, K. Reversal of GATA-6 downregulation promotes smooth muscle differentiation and inhibits intimal hyperplasia in balloon-injured rat carotid artery. Circulation Research. 84 (6), 647-654 (1999).
  37. Becher, T., et al. Three-Dimensional Imaging Provides Detailed Atherosclerotic Plaque Morphology and Reveals Angiogenesis after Carotid Artery Ligation. Circulation Research. 126 (5), 619-632 (2020).

Play Video

Citazione di questo articolo
Buglak, N. E., Bahnson, E. S. M. A Rat Carotid Artery Pressure-Controlled Segmental Balloon Injury with Periadventitial Therapeutic Application. J. Vis. Exp. (161), e60473, doi:10.3791/60473 (2020).

View Video