Summary

成像 Dpp 释放从果蝇翼光盘

Published: October 30, 2019
doi:

Summary

接触配体的时机可能会影响其发育后果。在这里,我们展示如何图像释放的果蝇骨形态遗传蛋白(BMP),称为Dpp从翅膀盘的细胞。

Abstract

转化的生长因子-β(TGF-β)超级家族对于多细胞生物中早期胚胎模式的形成和成人结构的发展至关重要。TGF-+超级家族包括TGF-α、骨形态遗传蛋白(BMPs)、活动因子、生长和分化因子以及诺达尔。人们早就知道,暴露于细胞的配体量对它的影响很重要。据认为,远距离浓度梯度建立了胚胎模式。然而,最近很明显,接触这些配体的时机对于它们的下游转录结果也很重要。TGF-+超级家族配体在从产生它的细胞中释放出来之前不能有发育后果。直到最近,还很难确定这些配体何时从细胞中释放出来。在这里,我们展示如何测量一种称为十苯酚(Dpp)的果蝇BMP从翼子板或翼盘的细胞中释放。此方法可以修改为其他系统或信令配体。

Introduction

骨形态遗传蛋白(BMPs)对于早期胚胎生成和成人结构模式形成至关重要。BBM 被生成和分泌,以影响响应细胞中生长和细胞分化所需的靶基因的转录。十进制(Dpp)是BMP4的果蝇同源体,对胚胎和成人结构的发展,如翼1,2,3,4是重要的。几个团体关注民进党在图案化成人飞翼的角色,因为1)翅膀由两张透明的上皮片组成,其图案一致,易于评估;2)翼盘也相当平坦,可在幼虫外培养,且易于成像和量化图案差异;3)翼型发展对民进党很敏感,因此路径上的小扰动会影响翼形图案。

Dpp是在位于翼盘5、6、7、8的前/后边界的细胞中产生的。Dpp绑定到1型和2型丝氨酸/色氨酸激酶受体9,10的复合体。在Dpp结合时,2型受体磷化1型受体,然后磷化母亲对Dpp(Mad),一个Smad 1/5/8同源。磷酸化SMAD招募了额外的共同Smad(美地),它使它进入细胞核,在那里它调节目标基因,导致下游效应,如增殖或分化4,11。

最近,贝茨实验室显示,在翼盘内不当释放Dpp会导致狂磷化减少,目标基因表达减少,以及机翼图案缺陷12、13。几个孔通道影响果蝇翼和相关结构的发展14,15。这些子通道也可能参与民进党的释放。在确定变形原释放的机制时,必须采用一种方法来可视化释放事件。

奥雷利奥·泰尔曼博士和斯蒂芬·科恩博士发明了一种Dpp-GFP融合蛋白,能够挽救Dpp的损失,这意味着它在生物学上是活跃的,并且以与生物学相关的方式释放16。在这里,我们描述我们如何可视化 Dpp 发布事件使用此 Dpp-GFP。这种融合蛋白是特别有用的,因为GFP是pH敏感,以至于当它是在酸性囊泡,荧光是淬火17。因此,当标有GFP的蛋白质从囊泡释放到更中性的细胞外环境中时,GFP荧光强度增加17。我们利用GFP的pH敏感性来确定Dpp-GFP是否存在于酸性囊泡中。我们图像翼盘表达Dpp-GFP之前和之后添加氯化铵,其中中和细胞内腔囊泡18。我们发现,在添加氯化铵后,普克塔的荧光显著增加,这表明在添加氯化铵18之前,细胞内Dpp-GFP是淬火的。我们得出结论,细胞内Dpp-GFP驻留在酸性膜结合的隔间,如囊泡,并在添加氯化铵后解脱,以中和细胞内腔内18的pH值。这使得Dpp-GFP的实时成像成为一种有用的技术,可以可视化Dpp在果蝇翼盘中的动态,因为它从酸性隔间释放到细胞外环境中。

在这里,我们描述了我们使用 Dpp-GFP 可视化 Dpp 发布事件的方法。Dpp-GFP可以用UAS-GAL4系统19果蝇翼盘的本土模式来表达。这是用来确定Irk频道影响Dpp版本18的方法。我们通过实时映像 z 堆栈验证了该方法。如果我们在一个焦点平面上获得,我们看不到Dpp-GFP puncta在时间序列的焦点平面内移动。如果我们在 z 堆栈中成像,我们也看不到 Dpp-GFP 的庞塔移动。我们得出结论,使用这种方法看到的Dpp-GFP puncta是释放事件,而不是细胞内囊泡的运动。这种民进党-GFP的实时成像方法,有可能用于测试民进党释放的其他假定修饰符对民进党动态的影响,也可以修改,以观察其他配体的动态

Protocol

1. 收集鸡蛋以生成幼虫进行解剖 交叉 30-40 处女 Dpp-GAL4/TM6 Tb Hu 飞到 10-15 男性 Sp/CyO-GFP;UAS-Dpp-GFP/TM6 Tb Hu.注:只要平衡器具有幼虫标记,允许在幼虫阶段选择适当的后代,可以使用任何包含 Dpp-GAL4 和 UAS-Dpp-GFP 的基因型。 要收集鸡蛋,将交叉的苍蝇翻转到新鲜的食物小瓶中,让它们放3⁄4小时,然后从小瓶中取出它们。为了鼓励产卵,在将苍蝇引入小瓶之前,可以在食…

Representative Results

图 2显示了该协议的代表性实时映像结果。当协议成功时,Dpp-GFP可以被看作是翼盘中心的条纹,在Dpp-GFP区域中,核可以作为非荧光圆可见(图2)。Dpp-GFP释放是可见的荧光双发,出现和消失。我们观察到Dpp-GFP荧光在细胞体中出现和消失,远离细胞体。民进党信号依赖于基于行为素的菲洛波迪亚状结构,称为cytonemes,远离细胞体22,23。</sup…

Discussion

公诉人等BSP在结合复杂的膜结合受体,在邻近或显然是遥远的细胞中引起细胞内信号的级联时,会产生显著的影响。ThomasKornberg博士的实验室已经表明,产生Dpp信号接触细胞的细胞使用基于活性素的瘦丝波迪亚状结构(称为cytonemes15、24、25)接收信号。这些数据表明,这种背景下的发育细胞-细胞通信可能类似于神经元突<sup clas…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢萨拉拉·普拉丹博士为这一议定书的早期版本开展工作。我们要感谢 NSF-IOS 1354282 在开发此协议时提供的资金。我们要感谢NIH-NIDCR RO1DE025311目前为实验室提供资金。

Materials

Baker's yeast Red Star    
CaCl2 dyhydrate Fisher Scientific C79-500
Coverslips VWR 484-457
Double-sided tape Scotch
Drosophila Agar Type II Apex 66-104
Drosophila melanogaster: Dpp-GAL4/TM6 Tb Hu This stock will soon be made available at Bloomington Drosophila Stock Center
Drosophila melanogaster: Sp/CyO-GFP; UAS-Dpp-GFP/TM6 Tb Hu This stock will soon be made available at Bloomington Drosophila Stock Center
Dumont Tweezers #5 World Precision Instruments 500233 Forceps for dissecting
HEPES Sigma Aldrich H3375
KCl Fisher Scientific AC193780010
Light Corn Syrup Karo
Malt Extract Breiss
MgCl2 Fisher Scientific AC223210010
Microscope slides Sigma Aldrich S8400
NaCl Fisher Scientific S271-500
NaHCO3 RPI S22060-1000.0
Nail polish Electron Micsroscopy Sciences 72180
Propionic Acid VWR U330-09
Soy Flour ADM Specialty Ingredients 062-100
Sucrose Fisher Scientific S5-3
Sucrose Fisher S512
Tegosept Genesee Scientific 20-259
Trehalose dyhydrate Chem-Impex International, Inc. 00766
Yellow Corn Meal Quaker
Zeiss LSM 780 confocal microscope Zeiss Microscope for live imaging
Zeiss SteREO Discovery.V8 microscope Zeiss Microscope for dissections

Riferimenti

  1. Ferguson, E. L., Anderson, K. V. Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell. 71 (3), 451-461 (1992).
  2. Ferguson, E. L., Anderson, K. V. Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development. 114 (3), 583-597 (1992).
  3. Wharton, K. A., Ray, R. P., Gelbart, W. M. An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development. 117 (2), 807-822 (1993).
  4. Raftery, L. A., Twombly, V., Wharton, K., Gelbart, W. M. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetica. 139 (1), 241-254 (1995).
  5. Raftery, L. A., Sanicola, M., Blackman, R. K., Gelbart, W. M. The relationship of decapentaplegic and engrailed expression in Drosophila imaginal disks: do these genes mark the anterior-posterior compartment boundary. Development. 113 (1), 27-33 (1991).
  6. Blackman, R. K., Sanicola, M., Raftery, L. A., Gillevet, T., Gelbart, W. M. An extensive 3′ cis-regulatory region directs the imaginal disk expression of decapentaplegic, a member of the TGF-beta family in Drosophila. Development. 111 (3), 657-666 (1991).
  7. de Celis, J. F. Expression and function of decapentaplegic and thick veins during the differentiation of the veins in the Drosophila wing. Development. 124 (5), 1007-1018 (1997).
  8. De Celis, J. F. Pattern formation in the Drosophila wing: The development of the veins. Bioessays. 25 (5), 443-451 (2003).
  9. Letsou, A., et al. Drosophila Dpp signaling is mediated by the punt gene product: a dual ligand-binding type II receptor of the TGF beta receptor family. Cell. 80 (6), 899-908 (1995).
  10. Nellen, D., Affolter, M., Basler, K. Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell. 78 (2), 225-237 (1994).
  11. Raftery, L. A., Sutherland, D. J. TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Biologia dello sviluppo. 210 (2), 251-268 (1999).
  12. Dahal, G. R., Pradhan, S. J., Bates, E. A. Inwardly rectifying potassium channels regulate Dpp release in the Drosophila wing disc. Development. 144 (15), 2771-2783 (2017).
  13. Dahal, G. R., et al. An inwardly rectifying K+ channel is required for patterning. Development. 139 (19), 3653-3664 (2012).
  14. George, L. F., et al. Ion Channel Contributions to Wing Development in Drosophila melanogaster. G3. 9 (4), 999-1008 (2019).
  15. Huang, H., Liu, S., Kornberg, T. B. Glutamate signaling at cytoneme synapses. Science. 363 (6430), 948-955 (2019).
  16. Teleman, A. A., Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell. 103 (6), 971-980 (2000).
  17. Miesenbock, G., De Angelis, D. A., Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 394 (6689), 192-195 (1998).
  18. Dahal, G. R., Pradhan, S. J., Bates, E. A. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release. Development. 144 (15), 2771-2783 (2017).
  19. Duffy, J. B. GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis. 34 (1-2), 1-15 (2002).
  20. Hazegh, K. E., Reis, T. A Buoyancy-based Method of Determining Fat Levels in Drosophila. Journal of Visualized Experiments. (117), e54744 (2016).
  21. Feng, Y., Ueda, A., Wu, C. F. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. Journal of Neurogenetics. 18 (2), 377-402 (2004).
  22. Hsiung, F., Ramirez-Weber, F. A., Iwaki, D. D., Kornberg, T. B. Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature. 437 (7058), 560-563 (2005).
  23. Roy, S., Hsiung, F., Kornberg, T. B. Specificity of Drosophila cytonemes for distinct signaling pathways. Science. 332 (6027), 354-358 (2011).
  24. Kornberg, T. B., Roy, S. Cytonemes as specialized signaling filopodia. Development. 141 (4), 729-736 (2014).
  25. Roy, S., Huang, H., Liu, S., Kornberg, T. B. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science. 343 (6173), 1244624 (2014).
  26. Kornberg, T. B., Roy, S. Communicating by touch–neurons are not alone. Trends in Cell Biology. 24 (6), 370-376 (2014).
check_url/it/60528?article_type=t

Play Video

Citazione di questo articolo
George, L. F., Bates, E. A. Imaging Dpp Release from a Drosophila Wing Disc. J. Vis. Exp. (152), e60528, doi:10.3791/60528 (2019).

View Video