Summary

从产后小鼠小脑中纯化Promin-1+干细胞

Published: April 12, 2020
doi:

Summary

这里演示的是一种高效且经济高效的方法,用于从产后小鼠小脑中纯化、培养和分化白质干细胞。

Abstract

大多数小脑神经元产生于两个胚胎干细胞利基:一个红唇壁,它产生所有的小脑外皮谷类神经元,和一个心室区利基,它产生抑制性GABAergic Purkinje细胞,这是构成深小脑核和伯格曼胶质的神经元。最近,第三个干细胞利基被描述为从心室区利基的继发生殖区。这种利基的细胞由细胞表面标记素-1定义,并定位为产后小脑的白质。这个利基占晚期出生的分子层GABAergic间神经元以及产后生成的小脑星细胞。除了他们的发育作用,这个利基正在获得翻译的重要性,其参与神经退化和肿瘤发生。由于缺乏有效的纯化技术,这些细胞的生物学一直难以破译。这里演示的是净化、培养和分化这些产后小脑干细胞的有效方法。

Introduction

小脑长期以来一直被认为是协调自愿运动的主要神经元回路1。它接收来自神经轴的宽条输入,包括来自外围的感知信息,从而微调电机输出和协调运动。最近,它还被牵连到通过可能使用类似的信息处理网络22,3,43,4来调节认知和情感。

成人小脑由外小脑皮层和内白质组成。在这些结构内穿插的是深内回核。与神经系统的其他部分类似,小脑的发展是由多能祖细胞(干细胞)的增殖推动的,这些细胞迁移并分化以产生这种组织良好的结构。在早期发育(E10.5_E13.5)中,围绕发育的第四个心室的心室干细胞利基产生GABAergic神经元(即珀金耶细胞、卢加罗细胞、高尔基细胞)以及伯格曼利亚55、6、7、8。6,7,8

在发育后期(产后第一周),红唇中的第二个干细胞利基产生MATH1和内丁表达的祖体,产生兴奋颗粒神经元9,109,10,11,12。,11,12最近,第三个干细胞利基被描述13。这些细胞表达prominin-1(也称为CD133),一种膜覆盖的糖蛋白,定义肠道和造血系统14、15、16的干细胞子集。14,15,16体内命运图显示,这些干细胞在前三个产后周内产生关键的分子层间神经元(即篮子细胞和斯特拉特细胞)以及星细胞。过去,在体外研究这些细胞是很困难的,因为先前的方法需要昂贵且耗时的技术(即荧光激活细胞分拣[FACS]),这些技术依赖于promin-1染色12、13、17。12,13,17该协议描述了一种基于免疫磁性的方法,用于分离这些干细胞,然后可以很容易地培养和分化。

Protocol

所有动物实验都符合NIH的《实验室动物护理和使用指南》(2011年),并经西北大学IACUC(IS00011368议定书)批准。 1. 准备解决方案 制备由无菌酚类红含量Dulbecco的磷缓冲盐水(DPBS)制成的组织分离溶液,包括木瓜素(100 U/ml)、半胱氨酸(0.2毫克/毫升)和DNase(250 U/ml)。 制备DNase溶液稀释100毫克的DNase I(一瓶)的嗜血粉在50 mL的H2O.混合良好,并过滤库…

Representative Results

Prominin-1阳性产后小脑干细胞在神经球介质中形成神经球,富含生长因子(EGF和bFGF)。这些神经球对promin-1染色呈阳性,这是用于分离的标记,也是其他干细胞标记物(如内丁和GFAP13)的污渍(图1)。干细胞标记表达在整个培养过程中保持,最多8个通道20。当退出生长因子时,在LIF和PDGF-AA(支持神经元和胶质分化21,22<su…

Discussion

在产后生命的前3周,Prominin-1表达的小脑干细胞存在于潜在的白质中。它们的增殖受到由Purkinje细胞17支持的声波刺猪通路的严格控制。这些干细胞/祖细胞有助于后来出生的GABAergic间神经元,称为篮子细胞和斯特拉特细胞。这些间神经元存在于分子层中,它们突触到Purkinje细胞上,并通过GABAergic抑制13、17、2317,雕刻PC地形13和功?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢蛋白石实验室成员的建议。这项工作得到了NIH授予1RO1 NS062051和1RO1NS08251(Opal P)的支持

Materials

0.05%Trypsin Thermo Fisher Scientific 25300054 0.05%
2% B27 Gibco; Thermo Fisher Scientific 17504001
2mM EDTA solution Corning 46-034-CI
Anti- Prominin-1 microbeads Miltenyi Biote 130-092-333
bovine serum albumin Sigma A9418
Column MultiStand Miltenyi Biotec 130-042-303
culture plates ultra – low attachment Corning 3473
cysteine Sigma C7880
DNase Sigma D4513-1VL 250 U/ml
Dulbecco’s Phosphate Buffer Saline Thermo Fisher Scientific 14040141
Hank's balanced salt solution-HBSS Gibco 14025-092
Human recombinant Basic Fibroblast Growth Factor Promega G507A 20 ng/ml
Human recombinant Epidermal Growth Factor Promega G502A 20 ng/ml
Leukemia Inhibitory Factor Sigma L5158
l-glutamine Gibco 25030081
Microscopy Lieca TCS SP5 confocal microscopes
MiniMACS separator Miltenyi Biotec 130-042-102
mouse anti-Prominin-1 Affymetrix eBioscience 14-1331 1 in 100
Nestin Abcam ab27952 1 in 200
Neurobasal medium Thermo Fisher 25030081
O4 Millopore MAB345
Papain Worthington LS003126 (100 U/ml)
Platelet- Derived Growth Factor Sigma H8291 10 ng/ml
Poly-D-Lysine Sigma P6407
rabbit anti-tubulin, b-III Sigma T2200 1 in 500
Rabit anti-GFAP Dako Z0334 1 in 500
Separation columns-MS columns Miltenyi Biotec 130-042-201
Sterile cell strainer Fisher Scientific 22363547 40um

Riferimenti

  1. Glickstein, M., Strata, P., Voogd, J. Cerebellum: history. Neuroscienze. 162, 549-559 (2009).
  2. Carta, I., Chen, C. H., Schott, A. L., Dorizan, S., Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science. 363, (2019).
  3. Sathyanesan, A., et al. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nature Reviews Neuroscience. 20, 298-313 (2019).
  4. Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J., Luo, L. Cerebellar granule cells encode the expectation of reward. Nature. 544, 96-100 (2017).
  5. Araujo, A. P. B., Carpi-Santos, R., Gomes, F. C. A. The Role of Astrocytes in the Development of the Cerebellum. Cerebellum. , (2019).
  6. Seto, Y., et al. Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nature Communication. 5, 3337 (2014).
  7. Marzban, H., et al. Cellular commitment in the developing cerebellum. Frontiers in Cell Neurosciences. 8, 450 (2014).
  8. Koziol, L. F., et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 13, 151-177 (2014).
  9. Ben-Arie, N., et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 390, 169-172 (1997).
  10. Machold, R., Fishell, G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 48, 17-24 (2005).
  11. Wang, V. Y., Rose, M. F., Zoghbi, H. Y. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 48, 31-43 (2005).
  12. Li, P., et al. A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity. Nature Neurosciences. 16, 1737-1744 (2013).
  13. Lee, A., et al. Isolation of neural stem cells from the postnatal cerebellum. Nature Neurosciences. 8, 723-729 (2005).
  14. Toren, A., et al. CD133-positive hematopoietic stem cell “stemness” genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells. 23, 1142-1153 (2005).
  15. Zhu, L., et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 457, 603-607 (2009).
  16. Man, S. M., et al. Critical Role for the DNA Sensor AIM2 in Stem Cell Proliferation and Cancer. Cell. 162, 45-58 (2015).
  17. Fleming, J. T., et al. The Purkinje neuron acts as a central regulator of spatially and functionally distinct cerebellar precursors. Developmental Cell. 27, 278-292 (2013).
  18. Panchision, D. M., et al. Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells. 25, 1560-1570 (2007).
  19. Beaudoin, G. M., et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nature Protocols. 7, 1741-1754 (2012).
  20. Edamakanti, C. R., Do, J., Didonna, A., Martina, M., Opal, P. Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1. Journal of Clinical Investigation. 128, 2252-2265 (2018).
  21. Erlandsson, A., Enarsson, M., Forsberg-Nilsson, K. Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. Journal of Neurosciences. 21, 3483-3491 (2001).
  22. Galli, R., Pagano, S. F., Gritti, A., Vescovi, A. L. Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Developmental Neurosciences. 22, 86-95 (2000).
  23. Silbereis, J., Cheng, E., Ganat, Y. M., Ment, L. R., Vaccarino, F. M. Precursors with Glial Fibrillary Acidic Protein Promoter Activity Transiently Generate GABA Interneurons in the Postnatal Cerebellum. Stem Cells. 27, 1152-1163 (2009).
  24. Parmigiani, E., et al. Heterogeneity and Bipotency of Astroglial-Like Cerebellar Progenitors along the Interneuron and Glial Lineages. Journal of Neurosciences. 35, 7388-7402 (2015).
  25. Wojcinski, A., et al. Cerebellar granule cell replenishment postinjury by adaptive reprogramming of Nestin(+) progenitors. Nature Neurosciences. 20, 1361-1370 (2017).
  26. Yang, Z., Joyner, A. L. YAP1 is involved in replenishment of granule cell precursors following injury to the neonatal cerebellum. Biologia dello sviluppo. 1606 (19), 30207 (2019).
  27. Wang, S. S., Kloth, A. D., Badura, A. The cerebellum, sensitive periods, and autism. Neuron. 83, 518-532 (2014).
  28. Eberhart, C. G. Three down and one to go: modeling medulloblastoma subgroups. Cancer Cell. 21, 137-138 (2012).
  29. Takahashi, M., et al. CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia. 28, 1308-1315 (2014).
check_url/it/60554?article_type=t

Play Video

Citazione di questo articolo
Edamakanti, C. R., Opal, P. Purification of Prominin-1+ Stem Cells from Postnatal Mouse Cerebellum. J. Vis. Exp. (158), e60554, doi:10.3791/60554 (2020).

View Video