Summary

使用多盐皮下聚乙烯醇海绵植入和外向尾皮肤伤口模型进行急性伤口愈合评估。

Published: March 25, 2020
doi:

Summary

这里描述了两个鼠伤愈合模型,一个旨在评估细胞和细胞因子伤口愈合反应,另一个用于量化伤口愈合率。这些方法可用于复杂的疾病模型,如糖尿病,以确定伤口愈合不良的各个方面的机制。

Abstract

伤口愈合是一个复杂的过程,需要炎症、造粒组织形成、纤维化和解决的有序进展。毛林模型为这些过程提供了宝贵的机械洞察力;然而,没有一个模型完全解决伤口愈合反应的所有方面。相反,最好使用多个模型来解决伤口愈合的不同方面。在这里,描述了两种不同的方法来处理伤口愈合反应的不同方面。在第一个模型中,聚乙烯醇海绵被皮下植入鼠标多糖。在海绵回收后,细胞可以通过机械中断进行分离,流体可以通过离心提取,从而能够详细描述急性伤口环境中的细胞和细胞因子反应。此模型的一个局限性是无法评估伤口闭合率。为此,使用了尾皮肤切除模型。在此模型中,沿着尾部底部附近的背表面切除了 10 mm x 3 mm 矩形尾皮。该模型可以很容易地拍摄平面分析,以确定愈合率,并可以切除组织学分析。这两种描述的方法可用于基因改变的小鼠菌株,或与合并条件模型(如糖尿病、衰老或继发感染)结合使用,以阐明伤口愈合机制。

Introduction

有许多鼠模型系统可用于检查伤口愈合过程,每个系统具有特定的优点和限制1,,2。以下方法提出了两种鼠伤模型,每个模型都涉及伤口愈合反应的特定方面,可用于识别损伤反应中扰动的因因和效果。伤口愈合的过程发生在不同的阶段。第一阶段是炎症,其特点是血小板、嗜中性粒细胞和单核细胞/巨噬细胞的迅速涌入,以及产生亲炎细胞因子和化学因子。炎症的解决后,环境过渡到一种更具弹性的状态,引入亲纤维和血管生成细胞因子和生长因子。造血组织沉积,新血管形成与肌纤维细胞、成纤维细胞、上皮细胞和内皮细胞的迁移。在最后阶段,临时细胞外基质进行改造,疤痕形成和伤口封闭进行232、3、4、5、6、7、8。6,7,84,5,,,

没有一个鼠模型提供一个系统来研究伤口愈合的所有阶段2。在这里,描述了两个手术伤口模型:一个阐明急性细胞和细胞因子伤口愈合反应,另一个允许评估伤口闭合以及组织分析。这两种方法可以以补充的方式用于评估扰动或合并症对伤口愈合反应不同方面的影响。聚苯乙烯醇(PVA)海绵的背皮下植入是一个系统,几十年来一直用于啮齿动物模型,阐明细胞和造粒组织反应的诸多方面9,109、10、11、12、13、14、15、16、17、18、19、20,11,12,13,14,15,16,17,18,19,20 21,,22,,23,,24.这种方法允许检索富含细胞因子的伤口液体和细胞渗透。在此模型中,1 厘米 x 1 厘米 x 0.5 厘米的 PVA 海绵通过后背背中线做出的 2 厘米切口放入皮下口袋。切口用手术夹闭合,以后可以取回海绵,用于细胞和流体隔离。分离海绵的细胞和细胞因子环境反映了急性伤口愈合的正常阶段,在植入后长达14天左右。在以后的时间点,该模型更有利于研究造粒组织的形成和异物反应1。有了这个系统,可以分离>106细胞,这为球形和功能测定和RNA分离提供了明显的优势,而不是从其他活检方法11,22,23,25,2622,23,25分离26细胞。

使用尾皮切除模型确定伤口闭合率。在这个模型中,如Falanga等人最初描述,并由其他人报告27,28,29,30,28,29一个1厘米x0.3厘米全厚的尾皮部分被去除附近的尾巴底部。,3027伤口区域易于可视化,并可随时间测量。或者,尾组织可以分离进行组织分析。这种方法可以用作替代或结合成熟的背孔活检方法。这两种型号的主要区别是伤口闭合率、毛皮的存在或缺失以及皮肤结构2,2、31、32。,32尾皮伤口提供了一个较长的时间框架来评估伤口关闭,因为它大约需要21天,完全关闭发生。这与未溅的背孔活检相反,这种活检愈合得更快(+7~10天),主要通过收缩引起的泛素性腺作用。溅条背孔活检愈合较慢,减少收缩愈合的影响,但依靠一个外国机构的存在来限制基于收缩的机制11,2,27,30,31,33。,2,27,30,31,33

所述伤口模型对于了解在无扰动的情况下正常伤口愈合过程的信息量很大。虽然啮齿动物皮肤的愈合与人类皮肤有非常显著的差异,包括结构松散、依赖收缩愈合和其他解剖学差异,但鼠系为机械和筛选研究提供了某些优势。其中最重要的是近亲繁殖菌株和遗传突变体的可用性、遗传可得性和更低的成本。从鼠学研究中获得的机械学见解可以转化为更复杂的动物模型,更密切地模仿人类皮肤愈合,如猪系统2,2,31。

除了检查伤口愈合反应在稳定状态,这些模型可以结合合并条件,以了解伤口愈合缺陷在细胞,细胞因子和毛组织水平的基础。正是在这个特殊环境中,两种模型可以协同评估特定合并症(如术后肺炎)对急性细胞伤口愈合反应和伤口闭合率的影响。

Protocol

这里描述的所有动物研究都得到布朗大学机构动物护理和使用委员会的批准,并根据《国家卫生研究院动物护理和使用指南》进行。 注:在视频中,手术窗帘被省略用于演示目的。 1. PVA海绵的皮下植入 使用剪刀将 PVA 海绵片切割成 8 毫米 x 8 毫米 x 4 毫米件。通过将 PVA 海绵碎片浸入无菌的 1x PBS 中,将其浸入烧杯中,使这些海绵重新补充水分。 在 1x PBS 中高压…

Representative Results

PVA海绵植入后的全身炎症反应PVA海绵植入手术产生了全身炎症反应,如伤伤1天后血浆中IL-6的诱导(图2A)。其他亲炎细胞因子,包括TNF-α和IL-1+,以及包括CCL2和CXCL1在内的一系列化学因子在PVA海绵植入后的前7天被系统诱导,并在其他地方描述了26,30。26, 从PVA海绵伤口分离细胞和液体</str…

Discussion

本文介绍了两种可处理的鼠伤模型,可用于评估急性伤口愈合反应。第一种方法涉及在背皮皮空间中植入PVA海绵。这种方法比基于活检的伤口模型具有明显的优势,用于研究细胞伤口愈合反应,因为从分离海绵中获得的细胞数量和伤口液体数量众多。为了成功实施这一程序,通过彻底清洁切口周围的皮肤来维持无菌手术场势在必行,因为细菌在伤口中的易位将大大改变愈合过程。使用此处描述的?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢布朗大学流动细胞测量和分拣基金的凯文·卡尔森在流细胞学实验方面的咨询和帮助。图 1B 和 C 中的图像是使用 BioRender 创建的。凯拉·李和格雷戈里·塞尔帕感谢他们的摄影帮助。这项工作得到了以下资助:国防高级研究计划局(DARPA)YFAA15 D15AP00100、院长新兴科学奖(布朗大学)、国家心肺血液研究所(NHLBI)1R01HL126887-01A1,国家环境科学研究所(NIES)T32-ES7272(环境病理学培训)和布朗大学研究种子奖。

Materials

10x Phosphate Buffered Saline Fisher Scientific BP3991
15 mL centrifuge tubes, Olympus Genesee 28-103
1x HBSS (+Calcium, +Magnesium, –Phenol Red) ThermoFisher Scientific 14025076
5ml Syringe BD 309646
Anti-mouse CD45.2-APC Fire750 BioLegend 109852 Clone 104
Anti-mouse F4/80-eFluor660 ThermoFisher Scientific 50-4801-82 Clone BM8
Anti-mouse Ly6C-FITC BD Biosciences 553104 Clone AL-21
Anti-mouse Ly6G-PerCP-eFluor710 ThermoFisher Scientific 46-9668-82 Clone 1A8-Ly6g
Anti-mouse Siglec-F-APC-R700 BD Biosciences 565183 Clone E50-2440
Autoclip Stainless Steel Wound Clip Applier Braintree Scientific NC9021392
Autoclip Stainless Steel Wound Clips, 9mm Braintree Scientific NC9334081
Blender Bag, 80mL Fisher Scientific 14258201
Culture Tube, 16mL, 17×100 Genesee Scientific 21-130
Fetal Bovine Serum – Standard ThermoFisher Scientific 10437028
Fixable Viability Dye eFluor506 ThermoFisher Scientific 65-0866-14
Hepes Solution, 1M Genesee Scientific 25-534
ImageJ Software NIH
Penicillin-Streptomycin (5000 U/mL) ThermoFisher Scientific 15070-063
Polyvinyl alcohol sponge – large pore size Ivalon/PVA Unlimited www.sponge-pva.com
Povidone-iodine solution, 10% Fisher Scientific 3955-16
Spray barrier film, Cavilon 3M 3346E
Stomacher 80 Biomaster, 110V Seward 0080/000/AJ

Riferimenti

  1. Gottrup, F., Agren, M. S., Karlsmark, T. Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society. 8 (2), 83-96 (2000).
  2. Elliot, S., Wikramanayake, T. C., Jozic, I., Tomic-Canic, M. A Modeling Conundrum: Murine for Cutaneous Wound Healing. Journal of Investigative Dermatology. 138 (4), 736-740 (2018).
  3. Eming, S. A., Martin, P., Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine. 6 (265), (2014).
  4. Huber-Lang, M., Lambris, J. D., Ward, P. A. Innate immune responses to trauma. Nature Immunology. 19 (4), 327-341 (2018).
  5. Novak, M. L., Koh, T. J. Phenotypic Transitions of Macrophages Orchestrate Tissue Repair. The American Journal of Pathology. 183 (5), 1352-1363 (2013).
  6. Martins-Green, M., Petreaca, M., Wang, L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Advances in Wound Care. 2 (7), 327-347 (2013).
  7. Guerrero-Juarez, C. F., et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nature Communications. 10 (1), 650 (2019).
  8. Shook, B. A., et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science. 362 (6417), 2971 (2018).
  9. Davidson, J. M., et al. Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor. The Journal of Cell Biology. 100 (4), 1219-1227 (1985).
  10. Buckley, A., Davidson, J. M., Kamerath, C. D., Wolt, T. B., Woodward, S. C. Sustained release of epidermal growth factor accelerates wound repair. Proceedings of the National Academy of Sciences. 82 (21), 7340-7344 (1985).
  11. Peterson, J. M., Barbul, A., Breslin, R. J., Wasserkrug, H. L., Efron, G. Significance of T-lymphocytes in wound healing. Surgery. 102 (2), 300-305 (1987).
  12. Efron, J. E., Frankel, H. L., Lazarou, S. A., Wasserkrug, H. L., Barbul, A. Wound healing and T-lymphocytes. Journal of Surgical Research. 48 (5), 460-463 (1990).
  13. Schäffer, M. R., Tantry, U., Thornton, F. J., Barbul, A. Inhibition of nitric oxide synthesis in wounds: pharmacology and effect on accumulation of collagen in wounds in mice. The European Journal of Surgery = Acta Chirurgica. 165 (3), 262-267 (1999).
  14. Opalenik, S. R., Davidson, J. M. Fibroblast differentiation of bone marrow-derived cells during wound repair. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 19 (11), 1561-1563 (2005).
  15. Järveläinen, H., et al. A role for decorin in cutaneous wound healing and angiogenesis. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society. 14 (4), 443-452 (2006).
  16. Luckett, L. R., Gallucci, R. M. Interleukin-6 (IL-6) modulates migration and matrix metalloproteinase function in dermal fibroblasts from IL-6KO mice. The British Journal of Dermatology. 156 (6), 1163-1171 (2007).
  17. Daniel, T., et al. Regulation of the postburn wound inflammatory response by gammadelta T-cells. Shock. 28 (3), 278-283 (2007).
  18. MacLauchlan, S., et al. Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9. Journal of Leukocyte Biology. 85 (4), 617-626 (2009).
  19. Schwacha, M. G., Thobe, B. M., Daniel, T., Hubbard, W. J. Impact of thermal injury on wound infiltration and the dermal inflammatory response. Journal of Surgical Research. 158 (1), 112-120 (2010).
  20. Ganesh, K., et al. Prostaglandin E2 Induces Oncostatin M Expression in Human Chronic Wound Macrophages through Axl Receptor Tyrosine Kinase Pathway. The Journal of Immunology. 189 (5), 2563-2573 (2012).
  21. Deskins, D. L., et al. Human mesenchymal stromal cells: identifying assays to predict potency for therapeutic selection. Stem Cells Translational Medicine. 2 (2), 151-158 (2013).
  22. Daley, J. M., Brancato, S. K., Thomay, A. A., Reichner, J. S., Albina, J. E. The phenotype of murine wound macrophages. Journal of Leukocyte Biology. 87 (1), 59-67 (2010).
  23. Thomay, A. A., et al. Disruption of Interleukin-1 Signaling Improves the Quality of Wound Healing. The American Journal of Pathology. 174 (6), 2129-2136 (2009).
  24. Brancato, S. K., et al. Toll-like receptor 4 signaling regulates the acute local inflammatory response to injury and the fibrosis/neovascularization of sterile wounds. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society. 21 (4), 624-633 (2013).
  25. Daley, J. M., et al. Modulation of macrophage phenotype by soluble product(s) released from neutrophils. Journal of Immunology. 174 (4), 2265-2272 (2005).
  26. Crane, M. J., et al. The monocyte to macrophage transition in the murine sterile wound. PloS One. 9 (1), 86660 (2014).
  27. Falanga, V., et al. Full-thickness wounding of the mouse tail as a model for delayed wound healing: accelerated wound closure in Smad3 knock-out mice. Wound Repair and Regeneration. 12 (3), 320-326 (2004).
  28. Li, J., et al. Molecular mechanisms underlying skeletal growth arrest by cutaneous scarring. Bone. 66, 223-231 (2014).
  29. Zhou, S., et al. A Novel Model for Cutaneous Wound Healing and Scarring in the Rat. Plastic and Reconstructive Surgery. 143 (2), 468-477 (2019).
  30. Crane, M. J., et al. Pulmonary influenza A virus infection leads to suppression of the innate immune response to dermal injury. PLOS Pathogens. 14 (8), 1007212 (2018).
  31. Grada, A., Mervis, J., Falanga, V. Research Techniques Made Simple: Animal Models Healing. Journal of Investigative Dermatology. 138 (10), 2095-2105 (2018).
  32. Rittié, L. Cellular mechanisms of skin repair in humans and other mammals. Journal of Cell Communication and Signaling. 10 (2), 103-120 (2016).
  33. Falanga, V., et al. Autologous Bone Marrow-Derived Cultured Mesenchymal Stem Cells Delivered in a Fibrin Spray Accelerate Healing in Murine and Human Cutaneous Wounds. Tissue Engineering. 13 (6), 1299-1312 (2007).
  34. Lucas, T., et al. Differential Roles of Macrophages in Diverse Phases of Skin Repair. The Journal of Immunology. 184 (7), 3964-3977 (2010).
  35. Wang, J., et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science. 358 (6359), 111-116 (2017).
  36. Mirza, R. E., Koh, T. J. Contributions of cell subsets to cytokine production during normal and impaired wound healing. Cytokine. , 1-4 (2014).
  37. Mirza, R., DiPietro, L. A., Koh, T. J. Selective and Specific Macrophage Ablation Is Detrimental to Wound Healing in Mice. The American Journal of Pathology. 175 (6), 2454-2462 (2010).
  38. DiPietro, L. A., Burdick, M., Low, Q. E., Kunkel, S. L., Strieter, R. M. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair. Journal of Clinical Investigation. 101 (8), 1693-1698 (1998).
  39. Wetzler, C., Kämpfer, H., Stallmeyer, B., Pfeilschifter, J., Frank, S. Large and Sustained Induction of Chemokines during Impaired Wound Healing in the Genetically Diabetic Mouse: Prolonged Persistence of Neutrophils and Macrophages during the Late Phase of Repair. Journal of Investigative Dermatology. 115 (2), 245-253 (2000).
  40. Kim, D. J., Mustoe, T., Clark, R. A. Cutaneous wound healing in aging small mammals: a systematic review. Wound Repair and Regeneration. 23 (3), 318-339 (2015).
check_url/it/60653?article_type=t

Play Video

Citazione di questo articolo
Crane, M. J., Henry Jr, W. L., Tran, H. L., Albina, J. E., Jamieson, A. M. Assessment of Acute Wound Healing using the Dorsal Subcutaneous Polyvinyl Alcohol Sponge Implantation and Excisional Tail Skin Wound Models.. J. Vis. Exp. (157), e60653, doi:10.3791/60653 (2020).

View Video