Summary

利用水中摩擦力对铝进行氢充电

Published: January 28, 2020
doi:

Summary

为了在铝和铝合金中引入大量的氢,开发了一种新的加氢方法,称为水过程中摩擦。

Abstract

利用水摩擦(FW)程序,研制出一种铝氢充水的新方法。根据水与非氧化物涂层铝之间的化学反应,此程序可以轻松地将大量氢气引入铝中。

Introduction

一般来说,铝基合金比钢具有更高的耐环境氢脆性。铝合金对氢脆性高,是由于合金表面的氧化膜阻挡了氢气的进入。为了评估和比较铝合金之间的高脆性敏感性,氢充电通常在机械测试1、2、3、4、5、6、7、8、9、10、11、12、13、14之前进行 15,16,17.然而,众所周知,氢充铝并不容易,即使使用氢气充电方法,如阴极充电15,湿空气16下缓慢应变率变形,或氢等离子气体充电17。氢充铝合金的难度也在于铝合金表面的氧化膜。我们假设,如果我们能在水中连续去除氧化膜,铝合金中就会引入大量的氢。热力学18,纯铝没有氧化物膜很容易与水反应,并产生氢气。在此基础上,基于水与非氧化物铝的化学反应,开发了铝合金加氢的新方法。该方法能够简单地将大量的氢气添加到铝合金中。

Protocol

1. 材料准备 使用由铝镁硅合金制成的 1 mm 厚板,其质量%为 Mg,0.8 质量%为 Si(Al-Mg-Si)。 用 Al-Mg-Si 合金板制作测试件,其仪表长度为 10 mm,宽度为 5 mm。 使用空气炉在 520°C 下对测试件进行 1 小时的封火。在水中以溶液进行热处理。 在175°C下对测试件进行18小时发火,作为峰值老化热处理(T6-temper)。 使用不含水的碳化硅砂纸(#2000)抛光测试件表面。 …

Representative Results

FW 程序的氢气生成/吸收图2显示了在含有不同量铁的Al-Mg-Si合金的FW过程中产生的氢气行为,质量%为0.1至0.7质量%。当搅拌器开始旋转时,试样持续排放大量氢气。这表明氢是由合金表面和水之间的摩擦引起的化学反应产生的。此外,FW 过程中水的 pH 值从 6.5–7.5 略有增加,如图3所示。根据Pourbaix19提出的电化学图,FW程?…

Discussion

FW 程序的一个重要方面是将两个试样连接到磁力搅拌器。由于搅拌棒的中心成为非摩擦区,因此最好避免在搅拌棒中心附着试样。

控制搅拌杆的旋转速度也很重要。当转速超过 240 rpm 时,很难将反应容器保持在磁力搅拌器的舞台上。高速执行 FW 程序时,需要将反应容器固定到磁搅拌器的阶段。

由于FW程序的氢充电是基于水与非氧化物涂层铝表面之间的化…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了日本大阪轻金属教育基金会的部分资助。

Materials

Air furnace GC QC-1
Aluminum alloy plates Kobe Steel Al/1.0 mass% Mg/0.8 mass% Si
Electric balance A&D HR-200
Glass container Custom made
Magnetic stirrer CORNING PC-410D
Optical Comparator NIKON V-12B
pH meter Sato Tech PH-230SDJ
Quartz tube Custom made
Rotary polishing machine IMT IM-P2
Secondary electrom microscope JOEL JSM-5310LV
Sensor gas chromatograph FIS Inc. SGHA
Silicon carbide emery paper IMT 531SR
Tensile testing machine Toshin Kogyo SERT-5000-C
Tubular furnace Honma Riken Custom made

Riferimenti

  1. Horikawa, K., Matsubara, T., Kobayashi, H. Hydrogen charging of Al-Mg-Si-based alloys by friction in water and its effect on tensile properties. Materials Science and Engineering A. 764, 138199 (2019).
  2. Horikawa, K. Current research trends in aluminum alloys for a high-pressure hydrogen gas container. Journal of Japan Institute of Light Metals. 60, 542-547 (2010).
  3. Kuramoto, S., Hsieh, M. C., Kanno, M. Environmental embrittlement of Al-Mg-Si base alloys deformed at low strain rates in laboratory air. Journal of Japan Institute of Light Metals. 52, 250-255 (2002).
  4. Horikawa, K., Yoshida, K. Visualization of Hydrogen in Tensile-Deformed Al-5%Mg Alloy by means of Hydrogen Microprint Technique with EBSP Analysis. Materials Transactions. 45, 315-318 (2004).
  5. Ueda, K., Horikawa, K., Kanno, M. Suppression of high temperature embrittlement of Al-5%Mg alloys containing a trace of sodium caused by antimony addition. Scripta Materialia. 37, 1105-1110 (1996).
  6. Horikawa, K., Ando, N., Kobayashi, H., Urushihara, W. Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions. Materials Science and Engineering A. 534, 495-503 (2012).
  7. Horikawa, K., Yamada, H., Kobayashi, H. Effect of strain rate on hydrogen gas evolution behavior during tensile deformation in 6061 and 7075 aluminum alloys. Journal of Japan Institute of Light Metals. 62, 306-312 (2012).
  8. Horikawa, K., Okada, H., Kobayashi, H., Urushihara, W. Visualization of diffusive hydrogen in low alloy steel by means of hydrogen microprint technique at elevated temperatures. Materials Transactions. 50, 759-764 (2009).
  9. Horikawa, K., Okada, H., Kobayashi, H., Urushihara, W. Visualization of hydrogen during fatigue fracture in an Al-Mg-Si alloy. Journal of Japan Institute of Light Metals. 56, 210-213 (2006).
  10. Horikawa, K., Okada, H., Kobayashi, H., Urushihara, W. Visualization of hydrogen distribution in tensile-deformed Al-5%Mg alloy investigated by means of hydrogen microprint technique with EBSP. Journal of the Japan Institute of Metals. 68, 1043-1046 (2004).
  11. Yamada, H., Tsurudome, M., Miura, N., Horikawa, K., Ogasawara, N. Ductility loss of 7075 aluminum alloys affected by interaction of hydrogen, fatigue deformation, and strain rate. Materials Science and Engineering A. 642, 194-203 (2015).
  12. Toda, H., et al. Effects of hydrogen micro pores on mechanical properties in a 2024 aluminum alloys. Materials Transactions. 54, 2195-2201 (2013).
  13. Yamada, H., Horikawa, K., Matsumoto, T., Kobayashi, H., Ogasawara, N. Hydrogen evolution behavior of tensile deformation process in 6061 and 7075 aluminum alloys. Journal of Japan Institute of Light Metals. 61, 297-302 (2011).
  14. Horikawa, K., Kobayashi, H. Hydrogen absorption of pure aluminum by friction of the surface in water and its effect on tensile properties. Journal of the Japan Institute of Metals. 84, (2020).
  15. Suzuki, H., Kobayashi, D., Hanada, N., Takai, K., Hagihara, Y. Existing state of hydrogen in electrochemically charged commercial-purity aluminum and its effects on tensile properties. Materials Transactions. 52, 1741-1747 (2011).
  16. Horikawa, K., Hokazono, S., Kobayashi, H. Synchronized monitoring between hydrogen gas release and progress of atmospheric hydrogen embrittlement in 7075 aluminum alloy. Journal of Japan Institute of Light Metals. 66, 77-83 (2016).
  17. Manaka, T., Aoki, M., Itoh, G. Thermal desorption spectroscopy study on the hydrogen behavior in a plasma-charged aluminum. Materials Science Forum. 879, 1220-1225 (2016).
  18. Ellingham, H. J. T. Reducibility of oxides and sulphides in metallurgical processes. Journal of the Society of Chemical Industry. 63, 125-133 (1944).
  19. Pourbaix, M. . Atlas of electrochemical equilibria in aqueous solutions, Ist ed. , 168-176 (1966).
  20. Young, G. A., Scully, J. R. The diffusion and trapping of hydrogen in high purity aluminum. Acta Materialia. 46, 6337-6349 (1998).
  21. Smith, S. W., Scully, J. R. The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy. Metallurgical and Materials Transactions A. 31, 179-193 (2000).
check_url/it/60711?article_type=t

Play Video

Citazione di questo articolo
Horikawa, K., Kobayashi, H. Hydrogen Charging of Aluminum using Friction in Water. J. Vis. Exp. (155), e60711, doi:10.3791/60711 (2020).

View Video