Summary

Avaliação da função de memória em camundongos epilépticos induzidos por pilocarpina

Published: June 04, 2020
doi:

Summary

Este artigo apresenta procedimentos experimentais para avaliação de prejuízos de memória em camundongos epilépticos induzidos por pilocarpina. Este protocolo pode ser usado para estudar os mecanismos fisiosiológicos do declínio cognitivo associado à epilepsia, que é uma das comorbidades mais comuns na epilepsia.

Abstract

O comprometimento cognitivo é uma das comorbidades mais comuns na epilepsia do lobo temporal. Para recapitular o declínio cognitivo associado à epilepsia em um modelo animal de epilepsia, geramos camundongos epilépticos crônicos tratados com pilocarpina. Apresentamos um protocolo para três diferentes testes comportamentais usando esses camundongos epilépticos: localização de objetos novos (NL), reconhecimento de objetos novos (NO) e testes de separação de padrões (PS) para avaliar o aprendizado e a memória de lugares, objetos e contextos, respectivamente. Explicamos como definir o aparelho comportamental e fornecer procedimentos experimentais para os testes de NL, NO e PS após um teste de campo aberto que mede as atividades basais locomotor dos animais. Descrevemos também as vantagens técnicas dos testes de NL, NO e PS em relação a outros testes comportamentais para avaliação da função de memória em camundongos epilépticos. Finalmente, discutimos possíveis causas e soluções para ratos epilépticos que não conseguem fazer 30 s de bom contato com os objetos durante as sessões de familiarização, o que é um passo fundamental para testes de memória bem sucedidos. Assim, este protocolo fornece informações detalhadas sobre como avaliar os prejuízos de memória associados à epilepsia usando camundongos. Os testes DE NL, NO e PS são ensaios simples e eficientes que são apropriados para a avaliação de diferentes tipos de memória em camundongos epilépticos.

Introduction

Epilepsia é uma doença crônica caracterizada por convulsões espontâneas recorrentes1,,2,3. Como convulsões repetitivas podem causar anormalidades estruturais e funcionais no cérebro1,,2,3, a atividade convulsiva anormal pode contribuir para a disfunção cognitiva, que é uma das comorbidades associadas à epilepsia mais comuns4,,5,6. Ao contrário dos eventos de convulsão crônica, que são transitórios e momentâneos, os prejuízos cognitivos podem persistir ao longo da vida dos pacientes epilépticos, deteriorando sua qualidade de vida. Por isso, é importante compreender os mecanismos fisiofiológicos do declínio cognitivo associado à epilepsia.

Vários modelos experimentais de epilepsia têm sido utilizados para demonstrar os déficits de aprendizagem e memória associados à epilepsia crônica7,,8,,9,,10,,11,12. Por exemplo, o labirinto de água morris, condicionamento de medo contextual, quadro de buracos, localização de objetos novos (NL) e novos testes de reconhecimento de objeto (NO) têm sido frequentemente usados para avaliar a disfunção da memória na epilepsia do lobo temporal (TLE). Como o hipocampo é uma das principais regiões em que a TLE mostra patologia, testes comportamentais que podem avaliar a função de memória dependente do hipocampo são muitas vezes selecionados preferencialmente. No entanto, dado que as convulsões podem induzir neurogênese hipocampal aberrante e contribuir para o declínio cognitivo associado à epilepsia10, paradigmas comportamentais para testar a função neuronal recém-nascida dento (ou seja, separação de padrão espacial, PS)8,13 também podem fornecer informações valiosas sobre os mecanismos celulares de prejuízos de memória na epilepsia.

Neste artigo, demonstramos uma bateria de testes de memória, NL, NO e PS, para ratos epilépticos. Os testes são simples e de fácil acesso e não exigem um sistema sofisticado.

Protocol

Todos os procedimentos experimentais foram aprovados pelo Comitê de Ética da Universidade Católica da Coreia e foram realizados de acordo com o Guia Nacional de Saúde para o Cuidado e Uso de Animais de Laboratório (NNI Publicações nº 80-23). 1. Novo teste de localização de objeto (NL) Prepare o epiléptico C57BL/6 ou camundongos transgênicos 4-6 semanas após a injeção de pilocarpina.NOTA: As convulsões agudas foram induzidas pela injeção de pilocarpina intraperit…

Representative Results

Um cronograma experimental geral e uma configuração para avaliação da função cognitiva são mostrados na Figura 1. Seis semanas após a introdução de convulsões agudas induzidas por pilocarpina, os camundongos foram submetidos aos testes de NL, NO e PS nessa ordem separados por períodos de descanso de 3 dias entre os testes(Figura 1A). Para o teste NL, dois objetos idênticos foram colocados no campo aberto durante a sessão de familiarização (F1), e…

Discussion

Este trabalho descreve procedimentos experimentais para avaliação da função cognitiva em camundongos com epilepsia crônica. Muitos paradigmas de teste comportamental diferentes são usados para avaliar funções de aprendizagem e memória em camundongos18. O labirinto de água morris, labirinto de braço radial, labirinto Y, condicionamento de medo contextual e testes baseados em objetos são os testes comportamentais mais usados e fornecem resultados confiáveis. Entre eles, os testes de NL,…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Agradecemos ao Dr. Jae-Min Lee pelo apoio técnico. Este trabalho foi apoiado pela Fundação Nacional de Pesquisa da Coreia (NRF) financiado pelo governo coreano (NRF-2019R1A2C1003958, NRF-2019K2A9A2A08000167).

Materials

1 ml syringe Sung-shim Use with the 26 or 30 gauge needle
70% Ethanol Duksan UN1170 Spray to clean the box and objects
black curtain For avoiding unnecessary visual cues
Cresyl violet Sigma C5042 For Cresyl violet staining
cryotome Leica E21040041 For tissue sectioning
double-sided sticky tape For the firm placement of the objects
DPX mounting medium Sigma 06522
ethanol series Duksan UN1170 Make 100%, 95%, 90%, 80%, 70% ethanol solutions
floor plate with narrow grid patterns Leehyo-bio Behavioral experiment equipment, plate size: 42.5 x 42.5 x 0.5 cm, grid size: 2.75 x 2.75 cm
floor plate with wide grid patterns Leehyo-bio Behavioral experiment equipment, plate size: 42.5 x 42.5 x 0.5 cm, grid size: 5.5 x 5.5 cm
illuminometer TES Electrical Electronic Corp. 1334A For the measurement of the room lighting (60 Lux)
Intensive care unit Thermocare #W-1
ketamine hydrochloride Yuhan 7003 Use to anesthetize the mouse for transcardial perfusion
LED lamp Lungo P13A-0422-WW-04 Lighting for the behavioral test room
objects Rubber doll, 50 ml plastic tube, glass Coplin jar, plastic T-flask, glass bottle
open field box Leehyo-bio Behavioral experiment equipment, size: 44 x 44 x 31 cm
paper towel Yuhan-Kimberly 47201 Use to dry open field box and objects
paraformaldehyde Merck Millipore 104005 Make 4% solution
pilocarpine hydrochloride Sigma P6503
ruler Use to locate the objects in the open field box
scopolamine methyl nitrate Sigma S2250 Make 10X stock
Smart system 3.0 Panlab Video tracking system
stopwatch Junso JS-307 For the measurement of explorative activities of mice
sucrose Sigma S9378 For cryoprotection of tissue sections
terbutaline hemisulfate salt Sigma T2528 Make 10X stock
video camera (CCD camera) Vision VCE56HQ-12 Place the camera directly overhead of the open field box
xylazine (Rompun) Bayer korea KR10381 Use to anesthetize the mouse for transcardial perfusion
xylene Duksan UN1307 For Cresyl violet staining

Riferimenti

  1. Chang, B. S., Lowenstein, D. H. Mechanisms of disease – Epilepsy. New England Journal of Medicine. 349 (13), 1257-1266 (2003).
  2. Scharfman, H. E. The neurobiology of epilepsy. Current Neurology and Neuroscience Report. 7 (4), 348-354 (2007).
  3. Rakhade, S. N., Jensen, F. E. Epileptogenesis in the immature brain: emerging mechanisms. Nature Reviews in Neurology. 5 (7), 380-391 (2009).
  4. Breuer, L. E., et al. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist. Neuroscience and Biobehavior Reviews. 64, 1-11 (2016).
  5. Leeman-Markowski, B. A., Schachter, S. C. Treatment of Cognitive Deficits in Epilepsy. Neurology Clinics. 34 (1), 183-204 (2016).
  6. Helmstaedter, C., Elger, C. E. Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease. Brain. 132, 2822-2830 (2009).
  7. Groticke, I., Hoffmann, K., Loscher, W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Experimental Neurology. 207 (2), 329-349 (2007).
  8. Long, Q., et al. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proceedings of the National Academy of Science U. S. A. 114 (17), 3536-3545 (2017).
  9. Lima, I. V. A., et al. Postictal alterations induced by intrahippocampal injection of pilocarpine in C57BL/6 mice. Epilepsy & Behavior. 64, 83-89 (2016).
  10. Cho, K. O., et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nature Communication. 6, 6606 (2015).
  11. Zhou, Q., et al. Adenosine A1 Receptors Play an Important Protective Role Against Cognitive Impairment and Long-Term Potentiation Inhibition in a Pentylenetetrazol Mouse Model of Epilepsy. Molecular Neurobiology. 55 (4), 3316-3327 (2018).
  12. Jiang, Y., et al. Ketogenic diet attenuates spatial and item memory impairment in pentylenetetrazol-kindled rats. Brain Research. 1646, 451-458 (2016).
  13. Zhuo, J. M., et al. Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks. Elife. 5, 22429 (2016).
  14. Kim, J. E., Cho, K. O. The Pilocarpine Model of Temporal Lobe Epilepsy and EEG Monitoring Using Radiotelemetry System in Mice. Journal of Visualized Experiments. (132), e56831 (2018).
  15. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  16. Muller, C. J., Groticke, I., Bankstahl, M., Loscher, W. Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Experimental Neurology. 219 (1), 284-297 (2009).
  17. Brandt, C., Gastens, A. M., Sun, M., Hausknecht, M., Loscher, W. Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology. 51 (4), 789-804 (2006).
  18. Wolf, A., Bauer, B., Abner, E. L., Ashkenazy-Frolinger, T., Hartz, A. M. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One. 11 (1), 0147733 (2016).
  19. Lueptow, L. M. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. Journal of Visualized Experiments. (126), e55718 (2017).
  20. Antunes, M., Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive Processing. 13 (2), 93-110 (2012).
  21. van Goethem, N. P., van Hagen, B. T. J., Prickaerts, J. Assessing spatial pattern separation in rodents using the object pattern separation task. Nature Protocols. 13 (8), 1763-1792 (2018).
  22. Leger, M., et al. Object recognition test in mice. Nature Protocols. 8 (12), 2531-2537 (2013).
  23. Moscovitch, M., Cabeza, R., Winocur, G., Nadel, L. Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation. Annual Reviews in Psychology. 67, 105-134 (2016).
  24. Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience. 1 (1), 41-50 (2000).
  25. Brown, M. W., Aggleton, J. P. Recognition memory: What are the roles of the perirhinal cortex and hippocampus. Nature Reviews Neuroscience. 2 (1), 51-61 (2001).
  26. Winters, B. D., Forwood, S. E., Cowell, R. A., Saksida, L. M., Bussey, T. J. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: Heterogeneity of function within the temporal lobe. Journal of Neuroscience. 24 (26), 5901-5908 (2004).
  27. Winters, B. D., Bussey, T. J. Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. Journal of Neuroscience. 25 (1), 52-61 (2005).
  28. Bermudez-Rattoni, F., Okuda, S., Roozendaal, B., McGaugh, J. L. Insular cortex is involved in consolidation of object recognition memory. Learning & Memory. 12 (5), 447-449 (2005).
  29. Akirav, I., Maroun, M. Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory. Cerebral Cortex. 16 (12), 1759-1765 (2006).
  30. Cohen, S. J., Stackman, R. W. Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behavior Brain Research. 285, 105-117 (2015).
  31. Cohen, S. J., et al. The Rodent Hippocampus Is Essential for Nonspatial Object Memory. Current Biology. 23 (17), 1685-1690 (2013).
  32. Broadbent, N. J., Gaskin, S., Squire, L. R., Clark, R. E. Object recognition memory and the rodent hippocampus. Learning and Memory. 17 (1), 5-11 (2010).
  33. Tuscher, J. J., Taxier, L. R., Fortress, A. M., Frick, K. M. Chemogenetic inactivation of the dorsal hippocampus and medial prefrontal cortex, individually and concurrently, impairs object recognition and spatial memory consolidation in female mice. Neurobiology of Learning and Memory. 156, 103-116 (2018).
  34. de Lima, M. N., Luft, T., Roesler, R., Schroder, N. Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neuroscience Letters. 405 (1-2), 142-146 (2006).
  35. Hammond, R. S., Tull, L. E., Stackman, R. W. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiology of Learning and Memory. 82 (1), 26-34 (2004).
  36. Clark, R. E., Zola, S. M., Squire, L. R. Impaired recognition memory in rats after damage to the hippocampus. Journal of Neuroscience. 20 (23), 8853-8860 (2000).
  37. Stackman, R. W., Cohen, S. J., Lora, J. C., Rios, L. M. Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term object memory and spatial memory. Neurobiology of Learning and Memory. 133, 118-128 (2016).
  38. Mumby, D. G., Gaskin, S., Glenn, M. J., Schramek, T. E., Lehmann, H. Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learning & Memory. 9 (2), 49-57 (2002).
  39. Jeong, K. H., Lee, K. E., Kim, S. Y., Cho, K. O. Upregulation of Kruppel-Like Factor 6 in the Mouse Hippocampus after Pilocarpine-Induced Status Epilepticus. Neuroscienze. 186, 170-178 (2011).
  40. Kim, J. E., Cho, K. O. The Pilocarpine Model of Temporal Lobe Epilepsy and EEG Monitoring Using Radiotelemetry System in Mice. Journal of Visualized Experiments. (132), e56831 (2018).
  41. Jiang, Y., et al. Abnormal hippocampal functional network and related memory impairment in pilocarpine-treated rats. Epilepsia. 59 (9), 1785-1795 (2018).
  42. Wang, L., Liu, Y. H., Huang, Y. G., Chen, L. W. Time-course of neuronal death in the mouse pilocarpine model of chronic epilepsy using Fluoro-Jade C staining. Brain Research. 1241, 157-167 (2008).
  43. Detour, J., Schroeder, H., Desor, D., Nehlig, A. A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats. Epilepsia. 46 (4), 499-508 (2005).
  44. Benini, R., Longo, D., Biagini, G., Avoli, M. Perirhinal Cortex Hyperexcitability in Pilocarpine-Treated Epileptic Rats. Hippocampus. 21 (7), 702-713 (2011).
  45. Yassa, M. A., Stark, C. E. Pattern separation in the hippocampus. Trends in Neurosciences. 34 (10), 515-525 (2011).
  46. Goncalves, J. T., Schafer, S. T., Gage, F. H. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell. 167 (4), 897-914 (2016).
  47. Sahay, A., et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 472 (7344), 466-539 (2011).
check_url/it/60751?article_type=t

Play Video

Citazione di questo articolo
Park, K., Kim, J., Choi, I., Cho, K. Assessment of Memory Function in Pilocarpine-induced Epileptic Mice. J. Vis. Exp. (160), e60751, doi:10.3791/60751 (2020).

View Video