Summary

使用混合原子力显微镜扫描电化学显微镜(AFM-SECM)探测纳米材料的表面电化学活性

Published: February 10, 2021
doi:

Summary

原子力显微镜 (AFM) 与扫描电化学显微镜 (SECM) 相结合,即 AFM-SECM,可用于同时获取纳米级材料表面的高分辨率地形和电化学信息。这些信息对于了解纳米材料、电极和生物材料的局部表面的异质特性(例如反应、缺陷和反应位点)至关重要。

Abstract

扫描电化学显微镜 (SECM) 用于测量液体/固体、液体/气体和液体/液体接口的局部电化学行为。原子力显微镜 (AFM) 是一种多功能工具,从地形和机械特性的角度描述微观和纳米结构。但是,传统的 SECM 或 AFM 提供有限横向解决的纳米级电化学性能信息。例如,传统的电化学方法很难解决晶体表面纳米材料表面的活动。本文报告了 AFM 和 SECM(即 AFM-SECM)的组合应用,在获取高分辨率地形数据的同时,探测纳米级表面电化学活动。这种测量对于理解纳米结构与反应活动之间的关系至关重要,这与材料科学、生命科学和化学过程的广泛应用有关。通过分别绘制分面纳米粒子 (NPs) 和纳米泡 (NBs) 的地形和电化学特性,证明了 AFM-SECM 组合的多功能性。与之前报告的SECM纳米结构成像相比,该 AFM-SECM 能够对局部表面活动或反应率进行定量评估,并具有更高的表面映射分辨率。

Introduction

电化学(EC)行为的特征可以提供对不同领域相互反应的动力学和机制的重要见解,如生物学1、2、能量3、4、材料合成5、6、7和化学过程8、9。传统的EC测量,包括电化学阻抗光谱10,电化学噪声方法11,电静电间歇性滴定12,周期伏测13通常以宏观尺度进行,并提供表面平均响应。因此,很难提取有关电化学活动如何分布在表面的信息,但在纳米材料被广泛使用的情况下,纳米尺度中的局部尺度表面特性尤为重要。因此,能够同时捕获纳米级多维信息和电化学的新技术是非常可取的。

扫描电化学显微镜(SECM)是测量尺度和纳米级材料局部电化学活性的一种广泛应用的技术。通常,SECM 使用超微电极作为探测器,用于检测电活性化学物种,因为它扫描样品表面以空间解决局部电化学特性15。探针上测量的电流是由介质物种的减少(或氧化)产生的,而这种电流是样品表面电化学反应的指标。SECM在1989年16、17年首次成立以来,已经发生了显著的发展,但它仍然受到两个主要限制的挑战。由于 EC 信号通常对尖端基板相互作用特性敏感,SECM 的一个限制是,由于地形与收集的 EC 信息18的卷积,将探针保持在恒定高度可防止电化学活动与表面景观的直接相关性。其次,商业 SECM 系统很难获得亚微米 (μm) 图像分辨率,因为空间分辨率部分由19微米尺度的探针尺寸决定。因此,纳米电极,直径在纳米范围内的电极,越来越多地用于SECM,以达到低于亚微米尺度20,21,22,23的分辨率。

为了提供恒定的尖端基板距离控制,获得更高的空间电化学分辨率,采用了SECM的几种混合技术,如离子传导定位24、剪切力定位25、交替电流SECM26和原子力显微镜(AFM)定位。在这些仪器中,SECM 集成 AFM 定位 (AFM-SECM) 已成为一种很有前途的方法。由于 AFM 可以提供固定的尖端基板距离,因此集成的 AFM-SECM 技术通过用锋利的 AFM 尖端进行映射或样品扫描,可同时获取纳米级表面结构和电化学信息。自1996年麦克弗森和翁温首次成功运行AFM-SECM以来,探测器的设计和制造以及在化学和生物过程电化学等各个研究领域的应用都取得了重大进展。例如,AFM-SECM已用于成像复合材料表面,如高贵金属纳米粒子28、功能化或维度稳定的电极29、30和电子设备31。AFM-SECM 可以从尖端电流图像绘制电化学活性站点的地图。

同时地形和电化学测量也可以通过其他技术实现,如导电自动对焦32,33,34,35,电化学AFM(EC-AFM)36,37,38,39扫描 离子传导显微镜扫描电化学显微镜(SICM-SECM)24,40,扫描电化学细胞显(SECCM)41,42这些技术之间的比较已经在审查文件1中讨论。本工作的目的是利用SECM-AFM来演示水中两面晶体杯氧化物纳米材料和纳米泡的电化学制图和测量。在清洁能源应用中,面纳米材料被广泛合成为金属氧化物催化剂,因为具有独特晶体特征的面具有独特的表面原子结构,并进一步支配其催化特性。此外,我们还测量和比较了金基板表面纳米气泡(NBs)在液/气接口的电化学行为。NB是直径为<1μm(也称为超细气泡)43的气泡,它们能引起许多有趣的特性44,45,包括在解决方案46,47和高效率的气体质量转移46,48的长时间居住时间。此外,NBs的崩溃会产生冲击波,并形成羟基基(+OH)49、50、51、52。我们测量了溶液中氧 NB 的电化学反应性,以更好地了解 NBs 的基本化学性质。

Protocol

1. 样品准备 制备分面Cu2O纳米粒子和硅基板沉积 溶解 0.175 克 CuCl2∙ 2H2O (99.9%)进入100mL的除离子(DI)水,产生10mM CuCl2的水溶液。 将 10.0 mL 的 2.0 M NaOH 和 10 mL 的 0.6 M 抗酸滴入 CuCl2 解决方案中。 在 55 °C 水浴中持续搅拌 250 mL 圆底烧瓶中加热溶液 3 小时。 通过离心收集由此产生的沉淀物(5,000 x g<…

Representative Results

AFM-SECM 的国家统计局的地形和当前成像 先前的研究,特点的NBs与AFM只报告地形图像,以揭示大小和分布的NBs固定在固体基材56,57。这里的实验揭示了形态学和电化学信息。单个氧气纳米泡 (ONB) 可以在图 9中明确识别,图 9 提供了地形以及尖端电流映射或信息。尖电流是由 [Ru (NH3]6 ]<su…

Discussion

本协议中描述了一种支持高分辨率多式联运成像的 AFM-SECM 组合技术。该技术允许地形图与收集或映射在单个纳米粒子或纳米泡上的 SECM 电流同时映射。实验是使用商业探针进行的。这些探针旨在提供化学兼容性与广泛的电化学环境,电化学性能,机械稳定性和多周期处理18。然而,AFM-SECM探测器的稳定性和耐用性对于可靠和高分辨率的电化学信息的测量至关重要。因此,步骤 3.2 …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由国家科学基金会(奖号:1756444)通过纳米材料的生物与环境界面、美国农业部国家粮食和农业研究所、AFRI项目[2018-07549]和美国环境保护局授予新泽西理工学院的援助协议第83945101-0号资助。环保局尚未对它进行正式审查。本文件所表达的意见仅是作者的意见,不一定反映原子能机构的意见。EPA 不认可本出版物中提及的任何产品或商业服务。作者还感谢新泽西理工学院本科研究与创新项目(URI)第一阶段和第二阶段。

Materials

Equipment
Atomic force microsopy Bruker, CA Dimenison Icon
Bipotentiostat CH Instruments, Inc. CHI 700E
Materials
Silicon wafer TED PELLA, Inc. 16013
Fresh gold plates Bruker, CA model 119-017-307
PF-SECM-AFM probes Bruker, CA 990-050138
PF-SECM strain-release module Bruker, CA 840-012-724
PF-SECM Probe Holder Bruker, CA 900-050121
PF-SECM Chuck Bruker, CA PF-SECM Chuck
PF-SECM O-ring Bruker, CA 598-000-106
PF-SECM cover glass, SECM Cell Bruker, CA 900-050137
EC Cell Assy Bruker, CA 932-017-300
ESD Field Service Bruker, CA 490-000-066
PF-SECM Boot Bruker, CA 900-050136
Spring connector block Bruker, CA 900-050524
PFSECM Tweezers Bruker, CA
Cable, SECM Tip module Bruker, CA 468-050171
Ag wire Bruker, CA 249-000-056
Pt wire Bruker, CA 248-000-004
Hard sharp wire Bruker, CA TT-ECM10
Tubular ceramic membrane Refracton WFA0.1
Chemicals
Copper(II) chloride dihydrate ACROS Organics AC315281000
Sodium Hydroxide Fisher Chemical S318-100
Ascorbic Acid Fisher Chemical A61-25
Epoxy Loctite Instant Mix
Potassium Chloride Fisher Chemical P217-500
Hexaammineruthenium(III) chloride ACROS Organics AC363342500

Riferimenti

  1. Shi, X., Qing, W., Marhaba, T., Zhang, W. Atomic Force Microscopy-Scanning Electrochemical Microscopy (AFM-SECM) for Nanoscale Topographical and Electrochemical Characterization: Principles, Applications and Perspectives. Electrochimica Acta. , 135472 (2019).
  2. Aazam, E. S., Ghoneim, M. M., El-Attar, M. A. Synthesis, characterization, electrochemical behavior, and biological activity of bisazomethine dye derived from 2, 3-diaminomaleonitrile and 2-hydroxy-1-naphthaldehyde and its zinc complex. Journal of Coordination Chemistry. 64 (14), 2506-2520 (2011).
  3. Shukla, A., Sampath, S., Vijayamohanan, K. Electrochemical supercapacitors: Energy storage beyond batteries. Current science. 79 (12), 1656-1661 (2000).
  4. Kötz, R., Carlen, M. Principles and applications of electrochemical capacitors. Electrochimica Acta. 45 (15-16), 2483-2498 (2000).
  5. Botte, G. G. Electrochemical manufacturing in the chemical industry. The Electrochemical Society Interface. 23 (3), 49-55 (2014).
  6. Kongsricharoern, N., Polprasert, C. Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Science and Technology. 31 (9), 109-117 (1995).
  7. Datta, M., Landolt, D. Fundamental aspects and applications of electrochemical microfabrication. Electrochimica Acta. 45 (15-16), 2535-2558 (2000).
  8. Wang, S., George, K., Nesic, S. High pressure CO2 corrosion electrochemistry and the effect of acetic acid. Corrosion/2004. 4375, (2004).
  9. Song, G. L. . Corrosion of Magnesium alloys. , 3-65 (2011).
  10. Bellezze, T., Giuliani, G., Viceré, A., Roventi, G. Study of stainless steels corrosion in a strong acid mixture. Part 2: anodic selective dissolution, weight loss and electrochemical impedance spectroscopy tests. Corrosion Science. 130, 12-21 (2018).
  11. Ehsani, A., et al. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory. Journal of Colloid and Interface Science. 490, 444-451 (2017).
  12. Cui, Z. H., Guo, X. X., Li, H. Equilibrium voltage and overpotential variation of nonaqueous Li-O2 batteries using the galvanostatic intermittent titration technique. Energy & Environmental Science. 8 (1), 182-187 (2015).
  13. Elgrishi, N., et al. A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education. 95 (2), 197-206 (2018).
  14. Amemiya, S., Bard, A. J., Fan, F. R. F., Mirkin, M. V., Unwin, P. R. Scanning Electrochemical Microscopy. Annual Review of Analytical Chemistry. 1 (1), 95-131 (2008).
  15. Mirkin, M. V., Nogala, W., Velmurugan, J., Wang, Y. Scanning electrochemical microscopy in the 21st century. Update 1: five years after. Physical Chemistry Chemical Physics. 13 (48), 21196-21212 (2011).
  16. Bard, A. J., Fan, F. R. F., Kwak, J., Lev, O. Scanning electrochemical microscopy. Introduction and principles. Analytical Chemistry. 61 (2), 132-138 (1989).
  17. Engstrom, R. C., Pharr, C. M. Scanning electrochemical microscopy. Analytical Chemistry. 61 (19), 1099-1104 (1989).
  18. Nellist, M. R., et al. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology. 28 (9), 095711 (2017).
  19. Patel, A. N., Kranz, C. (Multi) functional atomic force microscopy imaging. Annual Review of Analytical Chemistry. 11, 329-350 (2018).
  20. Ufheil, J., Heß, C., Borgwarth, K., Heinze, J. Nanostructuring and nanoanalysis by scanning electrochemical microscopy (SECM). Physical Chemistry Chemical Physics. 7 (17), 3185-3190 (2005).
  21. Bergner, S., Wegener, J., Matysik, F. M. Simultaneous imaging and chemical attack of a single living cell within a confluent cell monolayer by means of scanning electrochemical microscopy. Analytical Chemistry. 83 (1), 169-174 (2011).
  22. Hu, K., et al. Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes. Journal of Solid State Electrochemistry. 17 (12), 2971-2977 (2013).
  23. Kranz, C. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques. Analyst. 139 (2), 336-352 (2014).
  24. Morris, C. A., Chen, C. C., Baker, L. A. Transport of redox probes through single pores measured by scanning electrochemical-scanning ion conductance microscopy (SECM-SICM). Analyst. 137 (13), 2933-2938 (2012).
  25. Ludwig, M., Kranz, C., Schuhmann, W., Gaub, H. E. Topography feedback mechanism for the scanning electrochemical microscope based on hydrodynamic forces between tip and sample. Review of Scientific Instruments. 66 (4), 2857-2860 (1995).
  26. Eckhard, K., Schuhmann, W. Alternating current techniques in scanning electrochemical microscopy (AC-SECM). Analyst. 133 (11), 1486-1497 (2008).
  27. Macpherson, J. V., Unwin, P. R., Hillier, A. C., Bard, A. J. In-situ imaging of ionic crystal dissolution using an integrated electrochemical/AFM probe. Journal of the American Chemical Society. 118 (27), 6445-6452 (1996).
  28. Huang, K., Anne, A., Bahri, M. A., Demaille, C. Probing Individual Redox PEGylated Gold Nanoparticles by Electrochemical-Atomic Force Microscopy. ACS Nano. 7 (5), 4151-4163 (2013).
  29. Chennit, K., et al. Electrochemical Imaging of Dense Molecular Nanoarrays. Analytical Chemistry. 89 (20), 11061-11069 (2017).
  30. Jiang, J., et al. Nanoelectrical and Nanoelectrochemical Imaging of Pt/p-Si and Pt/p+-Si Electrodes. ChemSusChem. 10 (22), 4657-4663 (2017).
  31. Knittel, P., Mizaikoff, B., Kranz, C. Simultaneous nanomechanical and electrochemical mapping: combining peak force tapping atomic force microscopy with scanning electrochemical microscopy. Analytical Chemistry. 88 (12), 6174-6178 (2016).
  32. Quist, A. P., et al. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: Lab-on-a-chip system for lipid membranes and ion channels. Langmuir. 23 (3), 1375-1380 (2007).
  33. Cohen, H., et al. Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM. Faraday Discussions. 131, 367-376 (2006).
  34. Chung, J. W., et al. Single-crystalline organic nanowires with large mobility and strong fluorescence emission: a conductive-AFM and space-charge-limited-current study. Journal of Materials Chemistry. 19 (33), 5920-5925 (2009).
  35. Guo, D. Z., Hou, S. M., Zhang, G. M., Xue, Z. Q. Conductance fluctuation and degeneracy in nanocontact between a conductive AFM tip and a granular surface under small-load conditions. Applied Surface Science. 252 (14), 5149-5157 (2006).
  36. Rocca, E., Bertrand, G., Rapin, C., Labrune, J. C. Inhibition of copper aqueous corrosion by non-toxic linear sodium heptanoate: mechanism and ECAFM study. Journal of Electroanalytical Chemistry. 503 (1), 133-140 (2001).
  37. Toma, F. M., et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications. 7, 12012 (2016).
  38. Kouzeki, T., Tatezono, S., Yanagi, H. Electrochromism of Orientation-Controlled Naphthalocyanine Thin Films. The Journal of Physical Chemistry. 100 (51), 20097-20102 (1996).
  39. Yamaguchi, Y., Shiota, M., Nakayama, Y., Hirai, N., Hara, S. Combined in situ EC-AFM and CV measurement study on lead electrode for lead-acid batteries. Journal of Power Sources. 93 (1), 104-111 (2001).
  40. Comstock, D. J., Elam, J. W., Pellin, M. J., Hersam, M. C. Integrated Ultramicroelectrode-Nanopipet Probe for Concurrent Scanning Electrochemical Microscopy and Scanning Ion Conductance Microscopy. Analytical Chemistry. 82 (4), 1270-1276 (2010).
  41. Ebejer, N., Schnippering, M., Colburn, A. W., Edwards, M. A., Unwin, P. R. Localized High Resolution Electrochemistry and Multifunctional Imaging: Scanning Electrochemical Cell Microscopy. Analytical Chemistry. 82 (22), 9141-9145 (2010).
  42. Ebejer, N., et al. Scanning Electrochemical Cell Microscopy: A Versatile Technique for Nanoscale Electrochemistry and Functional Imaging. Annual Review of Analytical Chemistry. 6 (1), 329-351 (2013).
  43. Alheshibri, M., Qian, J., Jehannin, M., Craig, V. S. A history of nanobubbles. Langmuir. 32 (43), 11086-11100 (2016).
  44. Liu, G., Wu, Z., Craig, V. S. Cleaning of protein-coated surfaces using nanobubbles: an investigation using a quartz crystal microbalance. The Journal of Physical Chemistry C. 112 (43), 16748-16753 (2008).
  45. Ghadimkhani, A., Zhang, W., Marhaba, T. Ceramic membrane defouling (cleaning) by air Nano Bubbles. Chemosphere. 146, 379-384 (2016).
  46. Uchida, T., et al. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater. Nanoscale Research Letters. 6 (1), 1 (2011).
  47. Ushikubo, F. Y., et al. Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 361 (1-3), 31-37 (2010).
  48. Bowley, W. W., Hammond, G. L. Controlling factors for oxygen transfer through bubbles. Industrial, Engineering Chemistry Process Design and Development. 17 (1), 2-8 (1978).
  49. Li, P., Takahashi, M., Chiba, K. Enhanced free-radical generation by shrinking microbubbles using a copper catalyst. Chemosphere. 77 (8), 1157-1160 (2009).
  50. Takahashi, M., et al. Effect of shrinking microbubble on gas hydrate formation. The Journal of Physical Chemistry B. 107 (10), 2171-2173 (2003).
  51. Takahashi, M., Chiba, K., Li, P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. The Journal of Physical Chemistry B. 111 (6), 1343-1347 (2007).
  52. Ahmed, A. K. A., et al. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth. Journal of Agricultural and Food Chemistry. 66 (20), 5117-5124 (2018).
  53. Zhang, D. F., et al. Delicate control of crystallographic facet-oriented Cu 2 O nanocrystals and the correlated adsorption ability. Journal of Materials Chemistry. 19 (29), 5220-5225 (2009).
  54. Khaled Abdella Ahmed, A., et al. Colloidal Properties of Air, Oxygen, and Nitrogen Nanobubbles in Water: Effects of Ionic Strength, Natural Organic Matters, and Surfactants. Environmental Engineering Science. , (2017).
  55. Huang, Z., et al. PeakForce scanning electrochemical microscopy with nanoelectrode probes. Microscopy Today. 24 (6), 18-25 (2016).
  56. Lou, S. T., et al. Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science, Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 18 (5), 2573-2575 (2000).
  57. Borkent, B. M., Dammer, S. M., Schönherr, H., Vancso, G. J., Lohse, D. Superstability of surface nanobubbles. Physical Review Letters. 98 (20), 204502 (2007).
  58. Agarwal, A., Ng, W. J., Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere. 84 (9), 1175-1180 (2011).
  59. Tasaki, T., Wada, T., Baba, Y., Kukizaki, M. Degradation of surfactants by an integrated nanobubbles/VUV irradiation technique. Industrial & Engineering Chemistry Research. 48 (9), 4237-4244 (2009).
  60. Fujita, D., Itoh, H., Ichimura, S., Kurosawa, T. Global standardization of scanning probe microscopy. Nanotechnology. 18 (8), 084002 (2007).
  61. Häßler-Grohne, W., Hüser, D., Johnsen, K. P., Frase, C. G., Bosse, H. Current limitations of SEM and AFM metrology for the characterization of 3D nanostructures. Measurement Science and Technology. 22 (9), 094003 (2011).
  62. Sakai, K. . Measurement Techniques and Practices of Colloid and Interface Phenomena. , 51-57 (2019).
  63. Gan, T., Wu, B., Zhou, X., Zhang, G. Ultrahigh resolution, serial fabrication of three dimensionally-patterned protein nanostructures by liquid-mediated non-contact scanning probe lithography. RSC Advances. 6 (55), 50331-50335 (2016).
  64. Arteaga, J. F., et al. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles. Molecules. 17 (5), 5126-5138 (2012).
  65. Moreno-Herrero, F., Colchero, J., Gomez-Herrero, J., Baro, A. Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Physical Review E. 69 (3), 031915 (2004).
  66. Doktycz, M., et al. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy. 97 (1-4), 209-216 (2003).
check_url/it/61111?article_type=t

Play Video

Citazione di questo articolo
Shi, X., Ma, Q., Marhaba, T., Zhang, W. Probing Surface Electrochemical Activity of Nanomaterials using a Hybrid Atomic Force Microscope-Scanning Electrochemical Microscope (AFM-SECM). J. Vis. Exp. (168), e61111, doi:10.3791/61111 (2021).

View Video