Summary

骨骼肌成纤维细胞外泌体的分离和表征

Published: May 16, 2020
doi:

Summary

该方案说明了1)从成年小鼠腓肠肌中分离和培养原代成纤维细胞,以及2)使用差异超速离心法结合蔗糖密度梯度,然后进行蛋白质印迹分析的外泌体纯化和表征。

Abstract

外泌体是几乎所有细胞释放并在所有生物体液中分泌的小细胞外囊泡。已经开发了许多用于分离这些囊泡的方法,包括超速离心、超滤和体积排阻色谱法。然而,并非所有方法都适合大规模外泌体纯化和表征。这里概述了一种方案,用于建立从成年小鼠骨骼肌中分离的原代成纤维细胞的培养物,然后从这些细胞的培养基中纯化和表征外泌体。该方法基于使用连续离心步骤,然后是蔗糖密度梯度。然后使用一组经典标记物(即 Alix、CD9 和 CD81)通过蛋白质印迹分析来验证外泌体制剂的纯度。该方案描述了如何分离和浓缩生物活性外泌体,用于电子显微镜、质谱和功能研究的摄取实验。它可以很容易地放大或缩小,并适用于从不同细胞类型、组织和生物体液中分离外泌体。

Introduction

外泌体是异质细胞外囊泡,大小范围为 30-150 nm。鉴于它们在组织和器官中无处不在的分布,它们是生理和病理过程中的关键参与者 1,2。外泌体携带蛋白质、脂质、DNA 类型和 RNA 类型的复杂货物,这些货物根据它们来源的细胞类型而变化 1,2,3外泌体富含具有不同功能的蛋白质(即四跨膜蛋白,包括 CD9 和 CD63)负责融合事件。例如,热休克蛋白 HSP70 和 HSP90 参与抗原结合和呈递。此外,Alix、Tsg101 和 flotillin 参与外泌体生物发生和释放,并被广泛用作这些纳米囊泡的标志物 2,3,4

外泌体还含有多种 RNA(即 microRNA、长链非编码 RNA、核糖体 RNA),它们可以转移到受体细胞中,从而影响下游信号转导3。外泌体被单个单元膜包围,其生物活性不仅取决于蛋白质和核酸的货物,还取决于限制膜1的脂质成分。外泌体膜富含磷脂酰丝氨酸、磷脂酸、胆固醇、鞘磷脂、花生四烯酸和其他脂肪酸,所有这些都会影响外泌体稳定性和膜拓扑结构 2,3。由于货物和脂质排列,外泌体在接收细胞中启动信号通路并参与维持正常组织生理学 1,2,4,5。在某些病理条件下(即神经退行性变、纤维化和癌症),它们已被证明会触发和传播病理刺激 4,6,7,8,9,10,11。

由于外泌体能够将信号传播到邻近或遥远的部位,因此已成为诊断或预后疾病状况的有价值的生物标志物。此外,外泌体已被实验用作治疗化合物的载体 2,12。这些纳米囊泡在临床上的潜在应用使得分离方法变得越来越重要,以实现最大的产量、纯度和可重复性。已经开发和实施了用于分离外泌体的不同技术。通常,可以通过差速离心、体积排阻色谱和免疫捕获(使用市售试剂盒)从条件的细胞培养基或体液中分离外泌体。每种方法都有独特的优点和缺点,前面已经讨论过121314

概述的方案侧重于1)从成年小鼠腓肠肌中分离和培养原代成纤维细胞,以及2)这些细胞释放到培养基中的外泌体的纯化和表征。目前缺乏从原代成纤维细胞中分离外泌体以进行功能研究的成熟方案。原代成纤维细胞不分泌大量外泌体,使分离和纯化过程具有挑战性。该方案描述了从大培养体积中纯化大量纯外泌体,同时保持其形态完整性和功能活性。从条件培养基中获得的纯化外泌体已成功用于体外摄取实验,以诱导受体细胞中的特异性信号通路。它们还被用于对来自多个生物样品的外泌体货物进行比较蛋白质组学分析4

Protocol

小鼠的所有程序均根据圣裘德儿童研究医院机构动物护理和使用委员会和美国国立卫生研究院指南批准的动物方案进行。 1. 溶液和培养基的制备 通过将 15.4 mL PBS 与 2.5 mL 20 mg/mL 胶原酶 P(5 mg/mL 终浓度)、2 mL 11 U/mL 分散酶 II(1.2 U/mL 终浓度)和 100 μL 1.0 M CaCl2 (5 mM 终浓度)混合来制备消化溶液。 通过将 440 mL DMEM 与 50 mL FBS (10%)、5.0 mL pen/链球菌(?…

Representative Results

该方案适用于以具有成本效益的方式从大量条件培养基中纯化外泌体。该过程具有高度的可重复性和一致性。 图1 显示了从小鼠原代成纤维细胞培养基中纯化的外泌体的透射电子显微镜(TEM)图像。 图 2 显示了典型外泌体标记物的蛋白质表达模式,以及无胞质 (LDH) 和 ER(钙联蛋白)蛋白污染物。 图 3 显示了蔗糖密度梯度后典…

Discussion

如本协议所述,从培养基中成功分离外泌体的关键步骤是从成人骨骼肌中正确建立和维持原代小鼠成纤维细胞培养物。这些培养物需要保持在低氧水平,以确保生理条件(骨骼肌中的 O2 水平为 ~2.5%)15。原代成纤维细胞在培养中传承过多时会改变特征。因此,低传代数对于理想的外泌体产量是必不可少的。纯化的外泌体应立即用于实验目的,或在-80°C下以等分试样冷冻?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

亚历山德拉·达佐(Alessandra d’Azzo)是儿童珠宝商协会(JFC)遗传学和基因治疗的主席。这项工作得到了美国国立卫生研究院(NIH)拨款R01GM104981、RO1DK095169和CA021764、孟菲斯阿西西基金会和美国黎巴嫩叙利亚联合慈善机构的部分支持。

Materials

10 cm dishes Midwest Scientific, TPP TP93100
15 cm dishes Midwest Scientific TP93150
BCA protein assay kit Thermo Fisher Scientific, Pierce 23225
Bovine serum albumin Fraction V Roche 10735094001
CaCl2 Sigma C1016-100G
Centrifuge 5430R with rotors FA-35-6-30/ FA-45-48-11 Eppendorf 022620659/5427754008
Chemidoc MP imaging system BioRad 12003154
Collagenase P Sigma, Roche 11 213 857 001 100 mg
cOmplete protease inhibitor cocktail Millipore/Sigma, Roche 11697498001
Criterion Blotter with plate electrodes BioRad 1704070
Criterion TGX stain-free protein gel BioRad 5678034 10% 18-well, midi-gel
Criterion vertical electrophoresis cell (midi) BioRad NC0165100
Dispase II Sigma, Roche 04 942 078 001 neutral protease, grade II
Dithiothreitol Sigma/Millipore, Roche 10708984001
Dulbecco’s Modification Eagles Medium Corning 15-013-CV
Dulbecco’s Phosphate Buffered Saline Corning 21-031-CV
Ethanol 200 proof Pharmco by Greenfield Global 111000200
Falcon 50 mL conical centrifuge tubes Corning 352070
Fetal Bovine Serum Gibco 10437-028
Fluostar Omega multi-mode microplate reader BMG Labtech
GlutaMAX supplement Thermo Fisher Scientific, Gibco 35050-061
Hydrochloric acid Fisher Scientific A144S-500
Immobilon-P Transfer membranes Millipore IPVH00010
Laemmli sample buffer (4x) BioRad 1610747
Magnesium acetate solution Sigma 63052-100ml
Non-fat dry milk LabScientific M-0842
O2/CO2 incubator Sanyo MC0-18M
Penicillin-Streptomycin Thermo Fisher Scientific, Gibco 15140-122 10,000 U/ml
Premium microcentrifuge tubes Fisher Scientific, Midwest Scientific AVSC1510 1.7 mL
Protected disposable scalpels Fisher Scientific, Aspen Surgical Bard-Parker 372610
Running buffer BioRad 1610732
Sodium Chloride Fisher Scientific, Fisher Chemical S271-3
Stericup Quick release-GP sterile vacuum filtration system Millipore S2GPU05RE 500 mL
Sterile cell strainer (70 mm) Fisher Scientific, Fisher brand 22-363-548
Sucrose Fisher Scientific, Fisher Chemical S5-500
SuperSignal west Femto Thermo Fisher Scientific 34096
Thin wall Polypropylene tubes Beckman Coulter 326823
Transfer buffer BioRad 16110734
Trichloroacetic Acid Sigma 91228-100G
Tris base BioRad 1610719
Triton-X100 solution Sigma 93443-100mL
TrypLE Express Enzyme Thermo Fisher Scientific, Gibco 12604-013 No phenol red
Tween-20 BioRad #1610781
Ultra-centrifuge Optima XPM Beckman Coulter A99842
Ultra-clear tube (14×89 mm) Beckman Coulter 344059
Ultra-clear tubes (25×89 mm) Beckman Coulter 344058
Water bath Isotemp 220 Fisher Scientific FS220

Riferimenti

  1. Doyle, L. M., Wang, M. Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 8 (7), 727 (2019).
  2. Gurunanthan, S., Kang, M. H., Jeyaraj, M., Qasim, M., Kim, J. H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells. 8 (4), 307 (2019).
  3. Zhang, Y., Liu, Y., Liu, H., Tang, W. H. Exosomes: biogenesis, biologic function and clinical potential. Cell & Bioscience. 9 (19), 3070-3085 (2019).
  4. van de Vlekkert, D., et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Science Advances. 5 (7), 3270 (2019).
  5. Rackov, G., et al. A Vesicle-Mediated Control of Cell Function: The Role of Extracellular Matrix and Microenvironment. Frontiers in Physiology. 9, 651 (2018).
  6. Howitt, J., Hill, A. F. Exosomes in the pathology of neurodegenerative diseases. Journal of Biological Chemistry. 291 (52), 26589-26597 (2016).
  7. Jing, H., Tang, S., Lin, S., Liao, M., Chen, H., Zhou, J. The role of extracellular vesicles in renal fibrosis. Cell Death and Disease. 10 (5), 367 (2019).
  8. Asef, A., Mortaz, E., Jamaati, H., Velayati, A. Immunologic role of extracellular vesicles and exosomes in the pathogenesis of cystic fibrosis. Journal of Respiratory Diseases, Thoracic Surgery, Intensive Care and Tuberculosis. 17 (2), 66-72 (2018).
  9. Cai, A., Cheng, X., Pan, X., Li, J. Emerging role of exosomes in liver physiology and pathology. Hepatology Research. 47 (2), 194-203 (2017).
  10. Machado, E., et al. Regulated lysosomal exocytosis mediates cancer progression. Science Advances. 1 (11), 1500603 (2015).
  11. Tian, W., Liu, S., Li, B. Potential role of exosomes in cancer metastasis. Biomed Research International. , 4649705 (2019).
  12. Barile, L., Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of disease. Pharmacology and Therapeutics. 174, 63-78 (2017).
  13. Patel, G. K., et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Science Reports. 9 (1), 5335 (2019).
  14. Ayala-Mar, S., Donoso-Quezada, J., Gallo-Villanueva, R. C., Perez-Gonzalez, V. H., González-Valdez, J. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis. 40 (23-24), 3036-3049 (2019).
  15. Boutagy, N. E., et al. Isolation of Mitochondria from Minimal Quantities of Mouse Skeletal Muscle for High Throughput Microplate Respiratory Measurements. Journal of Visualized Experiments. (105), e53217 (2015).
  16. . Muscle Dissection in mouse Available from: https://www.youtube.com/watch?v=Wh0gXfrHaH8 (2016)
  17. Mas-Bargues, C., et al. Relevance of oxygen concentration in stem cell culture for regenerative medicine. International Journal of Molecular Sciences. 20 (5), 1195 (2019).
  18. Bois, P. R., Grosveld, G. FKHR (FOX01a) is required for myotube fusion of primary mouse myoblasts. The EMBO Journal. 22 (5), 1147-1157 (2003).
  19. Machida, S., Spangenburg, E. E., Booth, F. W. Primary rat muscle progenitor cells have decreased proliferation and myotube formation during passages. Cell Proliferation. 37, 267-277 (2004).
  20. Syverud, B. C., Lee, J. D., VanDusen, K. W., Larkin, L. M. Isolation and purification of satellite cells for skeletal muscle tissue engineering. Journal of Regenerative Medicine. 3 (2), 117 (2014).
check_url/it/61127?article_type=t

Play Video

Citazione di questo articolo
van de Vlekkert, D., Qiu, X., Annunziata, I., d’Azzo, A. Isolation and Characterization of Exosomes from Skeletal Muscle Fibroblasts. J. Vis. Exp. (159), e61127, doi:10.3791/61127 (2020).

View Video