Summary

香烟烟雾对肺 癫痫细胞 伪多多多细胞的影响研究

Published: May 11, 2020
doi:

Summary

这里描述的是一个协议,研究香烟烟雾提取物如何影响肺上皮细胞的细菌殖民化。

Abstract

吸烟是导致肺气肿和慢性阻塞性肺病(COPD)的主要病因。吸烟也会促进呼吸系统细菌感染的易感性。然而,吸烟对人类肺上皮细胞细菌感染的影响尚未得到彻底研究。这里描述的是一个详细的协议,用于准备吸烟提取物(CSE),用CSE治疗人类肺上皮细胞,以及细菌感染和感染测定。CSE 是用传统方法准备的。肺上皮细胞在3小时用4%的CSE治疗,然后,在10的多重感染(MOI)感染伪多Pseudomonas多体。细胞的细菌负荷由三种不同的方法确定。结果表明,CSE增加肺上皮细胞的伪多多体负荷。因此,该协议提供了一种简单且可重复的方法,用于研究香烟烟雾对肺上皮细胞细菌感染的影响。

Introduction

吸烟影响全世界数百万人的公众健康。许多有害疾病,包括肺癌和慢性阻塞性肺病(COPD),据报与吸烟有关。,2吸烟会增加呼吸系统3、4、5中急性微生物,感染易感性。此外,越来越多的证据表明,吸烟可以增强许多慢性疾病6、7、8,,发病机制。例如,吸烟可能会增加病毒或细菌感染,导致慢性阻塞性肺病恶化9。在病因上导致慢性阻塞性肺病急性恶化的细菌病原体中,一种机会性克阴性杆菌病原体,伪多莫纳斯阿鲁吉诺萨,导致感染与不良预知和较高的死亡10,11。,11慢性阻塞性肺病的恶化通过加速病理进展使疾病恶化。除了抗症状管理12,没有有效的治疗COPD恶化。慢性阻塞性肺病的恶化会加剧病人的死亡率,降低生活质量,增加社会的经济负担

呼吸道是一个开放的系统,不断受到外部存在的各种微生物病原体的影响。机会性细菌病原体通常在上气道中检测到,但有时在下气道14,15,中被发现。在动物模型中,在感染16后,只要1小时,就可以在阿尔维拉尔囊中检测到P.aeruginosa。作为一种主要的防御机制,免疫细胞,如巨噬细胞或嗜中性粒细胞,可消除气道中的细菌。肺上皮细胞作为第一个生理屏障,在宿主防御微生物感染方面具有独特的作用。肺上皮细胞可以调节微生物入侵、殖民化或复制,独立于免疫细胞17。上皮细胞中发现的一些分子,包括PPARg,发挥抗菌功能,从而调节细菌殖民化和复制在肺上皮细胞18。吸烟可能会改变分子,损害肺上皮细胞的正常防御功能19,20。19,20最近的研究表明,使用机器人吸烟装置21,22,将香烟烟雾直接暴露在肺上皮细胞中。然而,接触烟雾可以通过其他方式进行,包括应用 CSE。CSE 的制备是一种可重复的方法,具有其他细胞类型的潜在应用,包括间接暴露在香烟烟雾中的血管内皮细胞。

本报告描述了一种产生香烟烟雾提取物以改变肺上皮细胞中细菌负荷的协议。CSE增加 P.aeruginosa的细菌负荷,它可能有助于在COPD恶化中通常看到的细菌感染的复发。一种常规方法用于制备 CSE。肺上皮细胞,在他们的指数生长阶段,用4%的CSE治疗3小时。或者,单层培养的肺上皮细胞可以在空气-液体界面中直接暴露在香烟烟雾中。然后,CSE治疗的 细胞在 10的多重感染(MOI)上接受伪多多纳斯的挑战。细菌以特定的摇动速度传播,以确保其旗杆菌的形态保持不变,以保持其全部的侵入能力。根霉素用于杀死培养基中留下的细菌,从而减少细菌负荷的后续测定过程中的潜在污染。该协议还使用GP标签的伪多 monas,这已被作为研究不同模型中 伪多多纳斯 感染的有力工具。一个代表菌株 是P.氟森s 米古拉23。CSE治疗后感染程度或细菌负荷通过三种方式确定:带菌落计数的滴板方法,使用伪 多多 纳斯16S rRNA特异性底法的定量PCR,或感染荧光伪多多纳斯细胞的流细胞 。该协议是研究香烟烟雾对肺上皮细胞细菌感染的影响的简单且可重复的方法。

Protocol

1. 100% CSE 制备 将 10 mL 的无血清细胞培养基(BEAS-2B 细胞的 DMEM/F12;HSAEC 细胞的气道上皮细胞基质)绘制到 60 mL 注射器中。 反向将适当修剪的 1 mL 移液器尖端连接到注射器的喷嘴中,作为用于容纳香烟 (3R4F) 的适配器。 取出香烟的过滤器。将香烟连接到尖端适配器上,然后点燃香烟。 将 40 mL 含烟空气吸入 10 mL 的无血清介质中。通过剧烈摇晃(每次绘制 30 s)将烟?…

Representative Results

图用于说明图1 中的协议。肺上皮 BEAS-2B细胞用CSE治疗,并挑战伪多莫纳斯。培养基中的伪多多纳斯被添加的根霉素杀死,细胞接受滴板测定、伪多多体16SRNA的RT-qPCR检测和流动细胞切除术。与控制相比,CSE治疗在滴板方法中大大增加了细菌感染(图2)。相应地,CSE在HSAEC中受影响的细菌负荷(图3)。细胞生存?…

Discussion

细菌进入肺上皮细胞是细菌感染发病机制的关键一步。细菌进入细胞的过程可以分为以下三个步骤:第一,细菌接触并附着在上皮细胞表面使用其旗菌。其次,细菌要么进行内化,要么穿透细胞膜。最后,如果细菌成功逃脱细胞防御机制25,26,细菌复制殖民细胞。观察肺微噬细胞细菌感染的方法早已发展起来,但对肺上皮细胞的了解有?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作部分得到了国家卫生研究院R01赠款HL125435和HL142997(对CZ)的支持。

Materials

50mL syringe BD Biosciences
airway epithelial cell basal medium ATCC PCS-300-030
Bacteria shaker ThermoFisher Scientific
bronchial epithelial cell growth kit ATCC PCS-300-040
Cell Counter Bio-Rad
CFX96 Real-Time PCR System Bio-Rad
High-Capacity RNA-to-DNA KIT ThermoFisher Scientific 4387406
HITES medium ATCC ATCC 30-2004
human BEAS-2B cells ATCC ATCC CRL-9609
human primary small airway epithelial cells ATCC ATCC PCS-300-030
LSRII flow cytometer BD Biosciences
Nikkon confocal microscope Nikkon
OD reader USA Scientific
PCR primers ITD
Pseudomonas aeruginosa ATCC ATCC 47085 PAO1-LAC
Pseudomonas fluorescens Migula ATCC ATCC 27853 P.aeruginosa GFP
Research-grade cigarettes (3R4F) University of Kentucky TP-7-VA
RNeasy Mini Kit Qiagen 74106
Transprent PET Transwell Insert Corning Costar
Tryptic Soy Broth BD Biosciences

Riferimenti

  1. Vogelmeier, C. F., et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. American Journal of Respiratory and Critical Care Medicine. 195 (5), 557-582 (2017).
  2. Malhotra, J., Malvezzi, M., Negri, E., La Vecchia, C., Boffetta, P. Risk factors for lung cancer worldwide. European Respiratory Care Journal. 48 (3), 889-902 (2016).
  3. Lugade, A. A., et al. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection. Journal of Immunology. 192 (11), 5226-5235 (2014).
  4. Strzelak, A., Ratajczak, A., Adamiec, A., Feleszko, W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. International Journal of Environmental Research Public Health. 15 (5), (2018).
  5. Zuo, L., et al. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. American Journal of Physiology – Lung Cellular and Molecular Physiology. 307 (3), 205-218 (2014).
  6. Morse, D., Rosas, I. O. Tobacco smoke-induced lung fibrosis and emphysema. Annual Review of Physiology. 76, 493-513 (2014).
  7. Rigotti, N. A., Clair, C. Managing tobacco use: the neglected cardiovascular disease risk factor. European Heart Journal. 34 (42), 3259-3267 (2013).
  8. Jethwa, A. R., Khariwala, S. S. Tobacco-related carcinogenesis in head and neck cancer. Cancer Metastasis Review. 36 (3), 411-423 (2017).
  9. Papi, A., et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. American Journal of Respiratory and Critical Care Medicine. 173 (10), 1114-1121 (2006).
  10. Garcia-Vidal, C., et al. Pseudomonas aeruginosa in patients hospitalised for COPD exacerbation: a prospective study. European Respiratory Journal. 34 (5), 1072-1078 (2009).
  11. Murphy, T. F., et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 177 (8), 853-860 (2008).
  12. Wedzicha, J. A., Seemungal, T. A. COPD exacerbations: defining their cause and prevention. Lancet. 370 (9589), 786-796 (2007).
  13. Pavord, I. D., Jones, P. W., Burgel, P. R., Rabe, K. F. Exacerbations of COPD. International Journal of Chronic Obstructive Pulmonary Disease. 11, 21-30 (2016).
  14. Sethi, S. Bacterial infection and the pathogenesis of COPD. Chest. 117 (5), 286-291 (2000).
  15. Weinreich, U. M., Korsgaard, J. Bacterial colonisation of lower airways in health and chronic lung disease. Clinical Respiratory Journal. 2 (2), 116-122 (2008).
  16. Hook, J. L., et al. Disruption of staphylococcal aggregation protects against lethal lung injury. Journal of Clinical Investigation. 128 (3), 1074-1086 (2018).
  17. Ross, K. F., Herzberg, M. C. Autonomous immunity in mucosal epithelial cells: fortifying the barrier against infection. Microbes Infection. 18 (6), 387-398 (2016).
  18. Bedi, B., et al. Peroxisome proliferator-activated receptor-gamma agonists attenuate biofilm formation by Pseudomonas aeruginosa. FASEB Journal. 31 (8), 3608-3621 (2017).
  19. Tomita, K., et al. Increased p21(CIP1/WAF1) and B cell lymphoma leukemia-x(L) expression and reduced apoptosis in alveolar macrophages from smokers. American Journal of Respiratory and Critical Care Medicine. 166 (5), 724-731 (2002).
  20. Gally, F., Chu, H. W., Bowler, R. P. Cigarette smoke decreases airway epithelial FABP5 expression and promotes Pseudomonas aeruginosa infection. PLoS One. 8 (1), 51784 (2013).
  21. Thorne, D., Adamson, J. A review of in vitro cigarette smoke exposure systems. Experimental and Toxicologic Pathology. 65 (7-8), 1183-1193 (2013).
  22. Keyser, B. M., et al. Development of a quantitative method for assessment of dose in in vitro evaluations using a VITROCELL(R) VC10(R) smoke exposure system. Toxicology In Vitro. 56, 19-29 (2019).
  23. Del Arroyo, A. G., et al. NMDA receptor modulation of glutamate release in activated neutrophils. EBioMedicine. 47, 457-469 (2019).
  24. Lai, Y., Li, J., Li, X., Zou, C. Lipopolysaccharide modulates p300 and Sirt1 to promote PRMT1 stability via an SCF(Fbxl17)-recognized acetyldegron. Journal of Cell Sciences. 130 (20), 3578-3587 (2017).
  25. Bauman, S. J., Kuehn, M. J. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiology. 9, 26 (2009).
  26. Ichikawa, J. K., et al. Interaction of pseudomonas aeruginosa with epithelial cells: identification of differentially regulated genes by expression microarray analysis of human cDNAs. Proceedings of the National Academy of Sciences USA. 97 (17), 9659-9664 (2000).
  27. Rodriguez, D. C., Ocampo, M., Salazar, L. M., Patarroyo, M. A. Quantifying intracellular Mycobacterium tuberculosis: An essential issue for in vitro assays. Microbiologyopen. 7 (2), 00588 (2018).
  28. Long, C., Lai, Y., Li, T., Nyunoya, T., Zou, C. Cigarette smoke extract modulates Pseudomonas aeruginosa bacterial load via USP25/HDAC11 axis in lung epithelial cells. American Journal of Physiology – Lung Cellular Molecular Physiology. 318 (2), 252-263 (2020).
  29. Feldman, M., et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infections and Immunity. 66 (1), 43-51 (1998).
  30. Zhou, Y., et al. Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient. Molecules. 23 (1), 125 (2018).
  31. Mingeot-Leclercq, M. P., Glupczynski, Y., Tulkens, P. M. Aminoglycosides: activity and resistance. Antimicrobial Agents and Chemotherapy. 43 (4), 727-737 (1999).
  32. Chen, Y., et al. Endothelin-1 receptor antagonists prevent the development of pulmonary emphysema in rats. European Respiratory Journal. 35 (4), 904-912 (2010).
  33. Gardi, C., Stringa, B., Martorana, P. A. Animal models for anti-emphysema drug discovery. Expert Opinion in Drug Discovery. 10 (4), 399-410 (2015).
  34. Wang, Q., et al. A novel in vitro model of primary human pediatric lung epithelial cells. Pediatric Research. 87 (3), 511-517 (2019).
  35. Amatngalim, G. D., et al. Aberrant epithelial differentiation by cigarette smoke dysregulates respiratory host defence. European Respiratory Journal. 51 (4), 1701009 (2018).
  36. Tan, Q., Choi, K. M., Sicard, D., Tschumperlin, D. J. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials. 113, 118-132 (2017).
  37. Miller, A. J., et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols. 14 (2), 518-540 (2019).
check_url/it/61163?article_type=t

Play Video

Citazione di questo articolo
Li, T., Long, C., Fanning, K. V., Zou, C. Studying Effects of Cigarette Smoke on Pseudomonas Infection in Lung Epithelial Cells. J. Vis. Exp. (159), e61163, doi:10.3791/61163 (2020).

View Video