Summary

人体心室心肌细胞与颤音-切切心肌切片分离

Published: May 10, 2020
doi:

Summary

呈现是将人类和动物心室心肌细胞与振动切切心肌切片分离的协议。耐钙细胞(高达200个细胞/毫克)的高产量可以从少量组织(<50毫克)中获得。该协议适用于暴露于冷缺血的心肌,长达36小时。

Abstract

将心室心肌细胞与动物和人类心脏分离是心脏研究的基本方法。动物心肌细胞通常通过冠状动脉灌注与消化酶分离。然而,分离人类心肌细胞是具有挑战性的,因为人类心肌标本通常不允许冠状动脉灌注,而替代的分离方案导致活细胞产量低。此外,人类心肌标本是罕见的,只有定期在机构与现场心脏手术。这妨碍了从动物到人类心肌细胞的发现翻译。这里描述的是一个可靠的协议,能够有效地分离心室菌体与人类和动物的心肌。为了增加表面体积比,同时尽量减少细胞损伤,心肌组织切片300 μm厚由具有振动器的心肌标本生成。然后用蛋白酶和胶原酶消化组织切片。鼠菌通过流动细胞测量细胞计数建立协议并量化可行、耐钙的菌细胞的产量。与常用组织块法的比较显示,棒状心肌细胞的产量显著提高(41.5 ± 11.9 与 7.89 = 3.6%,p < 0.05)。该协议被转化为失败和非失败的人类心肌,其产量与大鼠心肌相似,同样明显高于组织块法(45.0 × 15.0 vs. 6.87 = 5.23细胞/毫克,p < 0.05)。值得注意的是,通过提出的协议,有可能从少量组织(<50毫克)中分离出合理数量的可行人类心肌细胞(9~200个细胞/毫克)。因此,该方法适用于来自人类和动物心脏的健康和失败的心肌。此外,在冷心肺溶液中,从储存长达36小时、长达36小时人体组织标本中分离出兴奋和收缩的菌细胞,使该方法对于无需现场心脏手术的机构实验室特别有用。

Introduction

一项开创性技术,为心肌细胞生理学的重要见解铺平了道路,是将活的心室心肌细胞与完整的心脏1隔离。分离的心肌细胞可用于研究正常的细胞结构和功能,或体内实验的后果;例如,评估心脏疾病动物模型中细胞电生理学或激发-收缩耦合的变化。此外,分离的心肌细胞可用于细胞培养、药理干预、基因转移、组织工程和许多其他应用。因此,有效的心肌细胞分离方法对基础和转化心脏研究具有根本价值。

来自小型哺乳动物(如啮齿动物)和大型哺乳动物(如猪或狗)的心肌细胞通常通过心脏的冠状动脉灌注与含有粗胶原蛋白酶和/或蛋白酶的溶液分离。这被描述为心肌细胞分离的”黄金标准”方法,导致高达70%的活细胞2。这种方法也用于人类心脏,导致,可接受的心肌细胞产生3,4,5。,45然而,由于冠状动脉灌注只有在有完整的心脏或含有冠状动脉分支的大心肌楔子可用的情况下才可行,因此大多数人类心脏标本不适合这种方法,因为它们体积小,缺乏适当的血管。因此,人类心肌细胞的分离是具有挑战性的。

人类心肌标本主要由大小可变的组织块(约0.5 x 0.5 x 0.5厘米至2×2×2厘米)组成,通过内氧心肌活检获得6,隔膜心肌切除术7,VAD植入8,或从外植心脏9。心肌细胞分离最常见的程序从用剪刀或手术刀切碎组织开始。然后,细胞到细胞的接触被浸入无钙或低钙缓冲液中破坏。随后是多个消化步骤与粗酶提取物或纯化酶,如蛋白酶(如蛋白酶),胶原酶,红霉素酶,或弹性酶,导致细胞外基质的解体和心肌细胞的解放。在最后的关键步骤中,生理钙浓度必须仔细恢复,否则细胞损伤可能发生由于钙悖论10,11,12。,11,12这种隔离方法很方便,但通常效率低下。例如,一项研究发现,需要近1克心肌组织才能获得足够数量的心肌细胞,适合随后的实验13。产量低的一个可能原因是比较苛刻的切碎组织的方法。这可能特别损害位于块边缘的心肌细胞,尽管这些肌细胞最有可能通过酶消化释放。

可能影响从人体标本获得的细胞的分离效率和质量的另一个方面是组织缺血的持续时间。大多数协议都提到实验室的运输时间短是取得良好结果的先决条件。这限制了人类心室心肌细胞的研究,而实验室有附近的心脏手术设施。总之,这些限制妨碍了人类心肌细胞动物模型的重要发现验证。因此,改进的分离方案,允许从少量组织中产生高心肌细胞,最好在延长运输时间后不会造成严重伤害。

这里描述的是一个隔离协议,基于酶消化的薄心肌组织切片产生的振动体14,15。14,我们证明,与用剪刀切碎的组织块分离组织切片的效率要高得多。所述方法不仅允许从少量心肌组织中高产量的活人心肌细胞,而且适用于在冷心肺溶液中储存或运输的标本,时间长达36小时。

Protocol

所有大鼠实验都得到德国巴伐利亚州米特尔弗兰肯动物护理和使用委员会的批准。埃尔兰根-纽伦堡大学和鲁尔-波鸿大学机构审查委员会批准了人体心脏组织样本的收集和使用。根据《赫尔辛基宣言》准则进行了研究。患者在组织采集前给予书面知情同意。 雌性威斯塔大鼠(150–200克)通过注射100毫克/千克的硫化钠进行麻醉,通过宫颈脱位安乐死,然后进行胸腔切除术和心?…

Representative Results

为了验证分离效率,该协议与大鼠心肌并一起使用,结果可行的菌细胞数量与通过冠状动脉灌注和从小组织块分离获得的数量进行比较(块分离, 图2).块分离和分离组织切片从相同的心脏执行。然而,对于通过冠状动脉灌注的隔离,使用了整个心脏。冠状灌注主要产生棒状和交叉条纹心肌细胞。与心肌切片分离,观察到的棒状细胞比例较低,但总数仍然很高。相比之下,从…

Discussion

虽然活体心肌细胞的分离是在40多年前建立的,并且仍然是许多心脏研究实验方法的先决条件,但它仍然是一个难以预测的结果的技术。心肌细胞通过输注冠状动脉与酶溶液进行分离,通常用于小动物的心脏,并产生大量可行的细胞。然而,这需要一个相对复杂的系统和专门知识。此外,由于人体组织样本体积小或没有冠状动脉分支,因此不适合使用这种方法,这使得人类心肌细胞分离的新方法?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢来自慕尼黑LMU实验医学中心沃尔特-布伦德尔中心的安德烈亚斯·登多弗在切片协议方面的帮助。为了提供人类心肌组织样本,我们要感谢来自埃尔兰根大学医院心脏外科部的加扎利·米纳巴里和克里斯蒂安·海姆、埃兰根大学医院埃里希和汉娜·克莱斯曼研究所的亨德里克·米尔廷、鲁尔-波鸿大学和埃尔兰根大学医院儿科心脏病学系的穆汉纳·阿尔卡萨尔。为了支持流式细胞学,我们要感谢西蒙·维尔克尔和来自翻译研究中心(TRC),埃尔兰根大学医院的同事。我们还要感谢来自埃尔兰根细胞和分子生理学研究所的洛伦茨·麦卡戈和席琳·格雷宁格提供出色的技术支持。

这项工作得到了德国心血管研究中心、埃尔兰根-纽伦堡大学医院临床跨学科中心(IZKF)和埃尔兰根-纽伦堡大学的支持。

Materials

Chemicals
2,3-butanedionemonoxime Carl Roth 3494.1 Purity>99%
Bovine serum albumin Carl Roth 163.2
CaCl2 Carl Roth 5239.2
Creatine monohydrate Alfa Aesar B250009
Glucose Merck 50-99-7
HEPES Carl Roth 9105.3
KCl Carl Roth P017.1
KH2PO4 Carl Roth 3904.2
L-glutamic acid Fluka Biochemica 49450
Low melting-point agarose Carl Roth 6351.5
MgCl2 x 6H2O Carl Roth A537.1
MgSO4 Sigma Aldrich M-7506
NaCl Carl Roth 9265.1
NaHCO3 Carl Roth 8551.2
Paraformaldehyde Sigma Aldrich P6148
Taurine Sigma Aldrich T8691
Dyes
Di-8-ANEPPS Thermo Fisher Scientific D3167
Fluo-4 AM Thermo Fisher Scientific F14201
FluoVolt Thermo Fisher Scientific F10488
Enzymes
Collagenase CLS type I Worthington LS004196 Used for human tissue at 4 mg/mL
(activity: 280 U/mg)
Collagenase CLS type II Worthington LS004176 Used for rat tissue at 1.5 mg/mL
(activity 330 U/mg)
Protease XIV Sigma Aldrich P8038 Used for rat tissue at 0.5 mg/mL
(activity ≥ 3.5 U/mg)
Proteinase XXIV Sigma Aldrich P5147 Used for human tissue at 0.5 mg/mL
(activity: 7-14 U/mg)
Material
Cell analyzer (LSR Fortessa) BD Bioscience 649225
Centrifuge tube, 15 mL Corning 430790
Centrifuge tube, 50 mL Corning 430829
Compact shaker Edmund Bühler KS-15 B control Agitation direction: horizontal
Disposable plastic pasteur-pipettes Carl Roth EA65.1 For cell trituration use only pipettes with an inner tip diameter ≥2 mm
Forceps FST 11271-30
Heatblock VWR BARN88880030
Nylon net filter, 180 µm Merck NY8H04700
TC Dish 100, Standard Sarstedt 83.3902
TC Dish 35, Standard Sarstedt 83.3900
TC Dish 60, Standard Sarstedt 83.3901
Vibratome (VT1200S) Leica 1491200S001 Includes VibroCheck for infrared-assisted correction of z-deflection

Riferimenti

  1. Powell, T., Twist, V. W. A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochemical and Biophysical Research Communications. 13, 258-283 (1976).
  2. Louch, W. E., Sheehan, K. A., Wolska, B. M. Methods in cardiomyocyte isolation, culture, and gene transfer. Journal of Molecular and Cellular Cardiology. 51, 288-298 (2011).
  3. Isenberg, G., Klockner, U. Calcium Tolerant Ventricular Myocytes Prepared by preincubation in a KB Medium. Pflügers Archiv: European Journal of Physiology. 395, 6-18 (1982).
  4. Beuckelmann, D. J., Näbauer, M., Erdmann, E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation. 85, 1046-1055 (1992).
  5. Brixius, K., Hoischen, S., Reuter, H., Lasek, K., Schwinger, R. H. G. Force/shortening-frequency relationship in multicellular muscle strips and single cardiomyocytes of human failing and nonfailing hearts. Journal of Cardiac Failure. 7, 335-341 (2001).
  6. Peeters, G. A., et al. Method for isolation of human ventricular myocytes from single endocardial and epicardial biopsies. The American Journal of Physiology. 268, 1757-1764 (1995).
  7. Coppini, R., et al. Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples. Journal of Visualized Experiments. (86), e51116 (2014).
  8. Seidel, T., et al. Sheet-Like Remodeling of the Transverse Tubular System in Human Heart Failure Impairs Excitation-Contraction Coupling and Functional Recovery by Mechanical Unloading. Circulation. 135, 1632-1645 (2017).
  9. Hartmann, N., et al. Antiarrhythmic effects of dantrolene in human diseased cardiomyocytes. Heart Rhythm. 14, 412-419 (2017).
  10. Bkaily, G., Sperelakis, N., Doane, J. A new method for preparation of isolated single adult myocytes. American Journal of Physiology-Heart and Circulatory Physiology. 247, 1018-1026 (1984).
  11. Trube, G., Sakmann, B., Neher, E. Enzymatic Dispersion of Heart and Other Tissues. Single-Channel Recording. , 69-76 (1983).
  12. Schlüter, K. D., Schreiber, D. Adult Ventricular Cardiomyocytes. Basic Cell Culture Protocols. 290, 305-314 (2004).
  13. Del Monte, F., et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation. 100, 2308-2311 (1999).
  14. Brandenburger, M., et al. Organotypic slice culture from human adult ventricular myocardium. Cardiovascular Research. 93, 50-59 (2012).
  15. Fischer, C., et al. Long-term functional and structural preservation of precision-cut human myocardium under continuous electromechanical stimulation in vitro. Nature Communications. 10, (2019).
  16. Seidel, T., et al. Glucocorticoids preserve the t-tubular system in ventricular cardiomyocytes by upregulation of autophagic flux. Basic Research in Cardiology. 114 (6), 47 (2019).
  17. Lipsett, D. B., et al. Cardiomyocyte substructure reverts to an immature phenotype during heart failure. Journal of Physiology. 597, 1833-1853 (2019).
  18. Watson, S. A., et al. Preparation of viable adult ventricular myocardial slices from large and small mammals. Nature Protocols. 12, 2623-2639 (2017).
  19. Guo, G. R., et al. A modified method for isolation of human cardiomyocytes to model cardiac diseases. Journal of Translational Medicine. 16, 1-9 (2018).
  20. Kang, C., et al. Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput Preclinical Human Trials. Scientific Reports. 6, 1-13 (2016).
  21. Gomez, L. A., Alekseev, A. E., Aleksandrova, L. A., Brady, P. A., Terzic, A. Use of the MTT assay in adult ventricular cardiomyocytes to assess viability: Effects of adenosine and potassium on cellular survival. Journal of Molecular and Cellular Cardiology. 29, 1255-1266 (1997).
  22. Zimmerman, A. N. E., Hülsmann, W. C. Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature. 211, 646-647 (1966).
  23. Piper, H. M. The calcium paradox revisited An artefact of great heuristic value. Cardiovascular Research. 45, 123-127 (2000).
  24. Boink, A. B. T. J., Ruigrok, T. J. C., de Moes, D., Maas, A. H. J., Zimmerman, A. N. E. The effect of hypothermia on the occurrence of the calcium paradox. Pflügers Archiv: European Journal of Physiology. 385, 105-109 (1980).
  25. Mulieri, L. A., Hasenfuss, G., Ittleman, F., Blanchard, E. M., Alpert, N. R. Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circulation Research. 65, 1441-1444 (1989).
  26. Busselen, P. Effects of sodium on the calcium paradox in rat hearts. Pflügers Archiv: European Journal of Physiology. 408, 458-464 (1987).
  27. Voigt, N., Zhou, X. B., Dobrev, D. Isolation of Human Atrial Myocytes for Simultaneous Measurements of Ca2+Transients and Membrane Currents. Journal of Visualized Experiments. (77), e50235 (2013).
  28. Leor, J., Kloner, R. An Experimental Model Examining the Role of Magnesium in the Therapy of Acute Myocardial Infarction. The American Journal of Cardiology. 75, 1292-1293 (1995).
  29. Herzog, W. R., et al. Timing of Magnesium Therapy Affects Experimental Infarct Size. Circulation. 92, 2622-2626 (1995).
  30. Stringham, J. C., Paulsen, K. L., Southard, J. H., Mentzer, R. M., Belzer, F. O. Forty-hour preservation of the rabbit heart: Optimal osmolarity, [Mg2+], and pH of a modified UW solution. The Annals of Thoracic Surgery. 58, 7-13 (1994).
  31. Hall, S. K., Fry, C. H. Magnesium affects excitation, conduction, and contraction of isolated mammalian cardiac muscle. American Journal of Physiology – Heart and Circulatory Physiology. 263 (2), 622-633 (1992).
  32. Bussek, A., et al. Tissue Slices from Adult Mammalian Hearts as a Model for Pharmacological Drug Testing. Cellular Physiology and Biochemistry. 24, (2009).
  33. Wang, K., et al. Living cardiac tissue slices: An organotypic pseudo two-dimensional model for cardiac biophysics research. Progress in Biophysics and Molecular Biology. 115, 314-327 (2014).
  34. Thomas, R. C., et al. A Myocardial Slice Culture Model Reveals Alpha-1A-Adrenergic Receptor Signaling in the Human Heart. Journal of the American College of Cardiology: Basic to Translational Science. 1, 155-167 (2016).
  35. Perreault, C. L., et al. Cellular basis of negative inotropic effect of 2,3-butanedione monoxime in human myocardium. American Journal of Physiology – Heart and Circulatory Physiology. 263, 503-510 (1992).
  36. Vahl, C. F., Bonz, A., Hagl, C., Hagl, S. Reversible desensitization of the myocardial contractile apparatus forcalcium: A new concept for improving tolerance to cold ischemia in human myocardium. European Journal of Cardio-thoracic Surgery. 8, 370-378 (1994).
  37. Horiuti, K., et al. Mechanism of action of 2, 3-butanedione 2-monoxime on contraction of frog skeletal muscle fibres. Journal of Muscle Research and Cell Motility. 9, 156-164 (1988).
  38. Li, T., Sperelakis, N., Teneick, R. E., Solaro, R. J. Effects of diacetyl monoxime on cardiac excitation-contraction coupling. Journal of Pharmacology and Experimental Therapeutics. 232, 688-695 (1985).
  39. Sellin, L. C., Mcardle, J. J. Multiple Effects of 2,3 Butanedione Monoxime. Pharmacology and Toxicology. 74, 305-313 (1993).
  40. Eghbali-Webb, M., Agocha, A. E., Pierce, G. N., Claycomb, W. C. A simple method for preparation of cultured cardiac fibroblasts from adult human ventricular tissue. Novel Methods in Molecular and Cellular Biochemistry of Muscle. , 195-198 (1997).
  41. Camelliti, P., et al. Adult human heart slices are a multicellular system suitable for electrophysiological and pharmacological studies. Journal of Molecular and Cellular Cardiology. 51, 390-398 (2011).
  42. Watson, S. A., et al. Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro. Nature Communications. 10, 2168 (2019).
  43. Watson, S. A., Terracciano, C. M., Perbellini, F. Myocardial Slices: an Intermediate Complexity Platform for Translational Cardiovascular Research. Cardiovascular Drugs and Therapy. 33, 239-244 (2019).

Play Video

Citazione di questo articolo
Fiegle, D. J., Volk, T., Seidel, T. Isolation of Human Ventricular Cardiomyocytes from Vibratome-Cut Myocardial Slices. J. Vis. Exp. (159), e61167, doi:10.3791/61167 (2020).

View Video