Summary

HDM过敏原中免疫原RNA物种的识别和特征,可调节嗜酸性肺炎

Published: May 30, 2020
doi:

Summary

环境过敏原,如家庭尘虫(HDM),通常含有微生物物质,激活先天免疫反应,以调节过敏性炎症。此处提出的协议演示了 HDM 过敏原中 dsRNA 物种的识别,并表征了其在调节嗜酸性肺炎症时免疫原性活动。

Abstract

环境过敏原,如家庭尘虫(HDM)通常以复杂形式,既含有过敏性蛋白质,驱动异常2型反应,又含有诱导先天免疫反应的微生物物质。这些过敏原相关的微生物成分在调节过敏性哮喘等2型炎症疾病的发展方面起着重要作用。然而,基本机制基本上仍未确定。此处提出的协议确定了过敏原相关免疫刺激RNA的结构特征和体内活性。具体来说,在HDM引起的过敏性哮喘小鼠模型中,对常见过敏原检查是否存在双链RNA(dsRNA)物种,这些物种可以刺激肺的 IFN 反应,并抑制严重肺嗜酸性病的发展。在这里,我们包括以下三种检测方法:点印显示从包括HDM物种在内的过敏原中分离出的DNA中的dsRNA结构;RT-qPCR测量HDM RNA在小鼠肺部干扰素刺激基因(ISG)表达(ISG)中的活动;FACS分析,分别确定HDM RNA对BAL和肺嗜酸性生物数量的影响。

Introduction

根据Strachan1最初提出的卫生假说,幼儿接触环境微生物因素,如内毒素可以防止过敏性疾病2,3,的发展。在微生物感染期间,例如病毒感染,异核酸(RNA/DNA)的先天免疫检测触发宿主防御反应4,4,5,6。,6然而,免疫原核酸的存在和流行,如长双链RNA(dsRNA)物种在家庭尘虫(HDM)或其他昆虫过敏原仍然未知。该协议旨在确定HDM或昆虫和非昆虫过敏原是否含有长dsRNA物种,可以激活保护性免疫反应,以抵消过敏性哮喘小鼠模型中严重嗜酸性肺炎症的发展。在这里,我们提供三种简单而快速的方法来评估HDM总RNA的结构决定因素,这些决定因素是调节过敏原诱发的嗜酸性肺炎症所需的。

粘膜免疫系统是人体最大的免疫器官,是抵御微生物感染和过敏侮辱的第,一道防线。长dsRNA,许多病毒的复制中间体,被称为病原体相关的分子模式(PAMP),通过像3(TLR3)这样的收费受体(TLR3)有效刺激先天反应,以诱导干扰素刺激基因(ISG)9、10、11、12、13、14,10,11,12,13表达。我们最近表明,HDM总RNA含有dsRNA结构,当通过心内注射在HDM提取物引起的过敏性哮喘的murine模型中施用时,可调节 ISG 的表达,减少严重的嗜酸性肺炎。肺炎症的严重程度是通过分析支气管(BAL)和肺组织的免疫细胞类型,通过流细胞学16,17,18,19,2016,17,18,19确定肺炎症的严重程度

该协议包括三种检测:1)使用小鼠单克隆抗体J2快速检测具有RNA点印迹的dsRNA结构,该抗体以与序列无关的方式与dsRNA(±40bp)结合;2) 使用RT-qPCR测量 ISG 的诱导,快速评估小鼠肺部免疫刺激RNA的体内效应;3) 使用流量细胞学分析,在HDM引起的肺部炎症背景下准确定量BAL和肺的嗜酸性。

上述检测不仅可用于研究过敏性肺病,还可用于研究呼吸道细菌和病毒感染。例如,dsRNA特异性J2抗体也可用于其他应用,如免疫仿彩色谱、免疫组织化学、酶链接免疫吸附剂测定(ELISA)和免疫染色21、22、23。21,22,23此外,BAL流体收集下游的几种应用可用于使用ELISA量化可溶性物质,如细胞因子和化疗素,以及气道细胞的转录分析(如道道巨噬细胞)。虽然文献中提供了多种评估肺病的协议,但大多数协议通常侧重于目标验证。此处描述的程序可用于识别环境过敏原中对调节过敏性疾病发展非常重要的成分。

Protocol

这里描述的实验程序得到了德克萨斯大学圣安东尼奥分校机构动物护理和使用委员会的批准。 1. 点印,以显示 HDM 总 RNA 中存在 dsRNA 结构 与过敏原、昆虫和非昆虫过敏原的总RNA分离 将活捉或商业获得的 HDM、昆虫或非昆虫动物放入 50 mL 管中,然后快速用液体-N2 冻结。然后在-70°C储存,以进行后续总RNA分离。注:在这个实验中,HDM,昆虫和非昆虫动物?…

Representative Results

使用 dsRNA 特异性小鼠单克隆抗体 J2(±40bp)对HDM、昆虫和非昆虫小动物中长 dsRNA 结构的存在进行了点印检查。RNase III 用于将 dsRNA 消化成 12~15 bp dsRNA 片段,J2 检测不到这些片段(图 1)。 RT-qPCR分析了HDM总RNA以剂量依赖的方式刺激小鼠肺部先天免疫反应的能力(图2,上部)。RNase III 治疗废除了 HDM 总 RNA 的免疫刺激活性,表明 HDM ?…

Discussion

目前的协议描述了如何评估过敏原相关微生物RNA的免疫刺激特性及其对过敏性哮喘小鼠模型中嗜酸性肺炎症发展的影响。虽然长dsRNA被称为许多病毒的复制中间体,可以有力地激活哺乳动物细胞中的干扰素反应,它们在HDM过敏原中的存在一直未知,直到我们最近的工作15。本手稿中介绍的RNA点印迹、RT-qPCR和FACS分析的组合,可能为解剖先天成分(如环境过敏原中的 dsRNA 物种)提供…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢卡拉·戈雷纳女士在流动细胞学方面提供技术援助。L.S. 得到中国奖学金理事会和湖南省研究生创新基金会 (CX201713068) 的支持。H.H.A. 由沙特阿拉伯萨卡卡朱夫大学应用医学学院临床实验室科学系提供支持。X.D.L. 由 UT 健康圣安东尼奥医学院创业基金和马克斯和明奈沃尔克基金支持。

Materials

0.40 µm Falcon Cell Strainer Thermo Fisher Scientific 08-771-1
1 mL syringes Henke Sass Wolf 5010.200V0
15 mL Tube TH.Geyer 7696702
50 mL Tube TH.Geyer 7696705
70% ethanol Decon Labs 2701
Absolute Counting Beads Life Technologies Europe B.V. C36950
ACK-RBC lysing buffer Lonza 10-548E
Amersham Hybond-N+ Membrane GE Healthcare RPN203B
Ant San Antonio Note: Locally collected
Antibody dilution buffer (see Table 5 for recipe)
Anti-Mouse CD11b V450 Rat (clone M1/70) BD Bioscience 560456 1 to 200 dilution
Anti-Mouse CD11c PE-Cy7 (clone N418) BioLegend 117317 1 to 200 dilution
Anti-Mouse CD19 Alexa Flour 647 (clone 1D3) eBioscience 15-0193-81 1 to 200 dilution
Anti-Mouse CD3e APC (clone 145-2C11) Invitrogen 15-0031-81 1 to 200 dilution
Anti-Mouse CD45 APC-Cy7 (clone: 30-F11) BioLegend 103130 1 to 200 dilution
Anti-Mouse Fixable Viabillity Dye eFluor 506 Invitrogen 65-0866-14 1 to 200 dilution
Anti-Mouse IgG (H+L), AP Conjugate Promega S3721
Anti-Mouse Ly-6G FITC (clone RB6-8C5) Invitrogen 11-5931-82 1 to 200 dilution
Anti-Mouse MHC II APC-eFluor 780 (clone M5/114.15.2) eBioscience 47-5321-80 1 to 200 dilution
Anti-Mouse Siglec-F PE (clone E50-2440) BD Pharmingen 552126 1 to 200 dilution
BCIP/NBT substrate Thermo Fisher Scientific PI34042
Blocking Buffer (see Table 5 for recipe)
Cannual, 20G X 1.5” CADENCE SCIENCE 9920
Centrifuge Thermo Fisher Scientific 75004030
CFX384 Touch Real-Time PCR Detection System Bio-Rad Laboratories 1855485
Chloroform Thermo Fisher Scientific C298-500
Cockroach Greer Laboratories B26
Counting beads Thermo Fisher Scientific 01-1234-42
D. farinae Greer Laboratories B81
D. pteronyssinus Greer Laboratories B82
Denville Cell Culture Plates with lid, 96 well cell culture plate Thomas Scientific 1156F03
Digital Dry Bath – Four Blocks Universal Medical, Inc. BSH1004
Earthworm San Antonio Note: Locally collected
Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich E6511
FACS buffer (see recipe in Table 5)
Falcon Round-Bottom Polypropylene Tubes, 5 mL STEMCELLTM TECHNOLOGIES 38056
Flow cytometer (BD FACS Celesta) BD Biosciences
Fly Greer Laboratories B8
Forceps Roboz Surgical Instrument RS-5135
Hemocytometer Hausser Scientific 3110
HT-DNA Sigma D6898
In Vivo MAb anti-mouse CD16/CD32 (clone: 2.4G2) Bio X Cell BE0307
iScript cDNA Synthesis Kit Bio-Rad Laboratories 1708891
Isoflurane Abbott Labs sc-363629Rx
Isopropanol Thermo Fisher Scientific BP2618500
J2 anti-dsRNA monoclonal antibody SCICONS 10010200
Lung digestion solution (see recipe in Table 5)
Lysing Matrix D MP Biomedicals 116913050-CF
Lysing Matrix D, 2 mL tube MP Biomedicals SKU:116913100
Mice (female, 8-12 weeks old, C57BL/6J) Jackson Laboratory #000664
Microcentrifuge tube 1.5 mL Sigma-Aldrich 30120.094
Microscope Olympus CK30
Mini-BeadBeater Homogenizers SKU:BS:607
Mini-Beadbeater-16 Biospec 607
Mosquito Greer Laboratories B55
NanoDrop 2000C Thermo Scientific Spectophotometer Medex Supply TSCND2000C
Needle, 21 G x 1 1/2 in BD Biosciences 305167
Non-fat milk Bio-Rad Laboratories 1706404
Nylon string Dynarex 3243
Phosphate-buffered Saline (PBS) Lonza BE17-516F
RNase III Thermo Fisher Scientific AM2290
RNase T1 Thermo Fisher Scientific AM2283
Scissors Roboz Surgical Instrument RS-6802
Shaker or Small laboratory mixer Boekel Scientific 201100
SPHERO AccuCount Fluorescent Spherotech ACFP-70-5 1 to 10 dilution
Spider San Antonio Note: Locally collected
TBS (see recipe in Table 5)
TBS-T (see recipe in Table 5)
Total cell medium (see recipe in Table 5)
TRIzol Reagent Thermo Fisher Scientific 15596018
Tween 20 Sigma-Aldrich P9416
UV Stratalinker 2400 UV LabX 20447
Wasp San Antonio Note: Locally collected

Riferimenti

  1. Strachan, D. P. Hay fever, hygiene, and household size. BMJ. 299, 1259-1260 (1989).
  2. Schuijs, M. J., et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 349, 1106-1110 (2015).
  3. Stein, M. M., et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. New England Journal of Medicine. 375, 411-421 (2016).
  4. Roers, A., Hiller, B., Hornung, V. Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity. 44, 739-754 (2016).
  5. Schlee, M., Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nature Reviews Immunology. 16, 566-580 (2016).
  6. Wu, J., Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annual Reviews Immunology. 32, 461-488 (2014).
  7. O’Hara, A. M., Shanahan, F. The gut flora as a forgotten organ. EMBO Reports. 7 (7), 688-693 (2006).
  8. . Focused Meeting 2018: Microbes and Mucosal Surfaces Available from: https://microbiologysociety.org/event/society-events-and-meetings/focused-meeting-2018-microbes-and-mucosal-surfaces.html (2018)
  9. Weber, F., et al. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. Journal of Virology. 80, 5059-5064 (2006).
  10. Barral, P. M., et al. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: Key regulators of innate immunity. Pharmacology and Therapeutics. 124, 219-234 (2009).
  11. Netea, M. G., et al. From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrobial Agents and Chemotherapy. 49, 3991-3996 (2005).
  12. McNally, B., et al. Intranasal administration of dsRNA analog poly(I:C) induces interferon-alpha receptor-dependent accumulation of antigen experienced T cells in the airways. PLoS One. 7, 51351 (2012).
  13. Seya, T., Takeda, Y., Matsumoto, M. Tumor vaccines with dsRNA adjuvant ARNAX induces antigen-specific tumor shrinkage without cytokinemia. Oncoimmunology. 5, 1043506 (2016).
  14. Toussi, D. N., Massari, P. Immune Adjuvant Effect of molecularly defined Toll-Like Receptor Ligands. Vaccines (Basel). 2, 323-353 (2014).
  15. She, L., et al. Immune Sensing of Aeroallergen-Associated Double-Stranded RNA Triggers an IFN Response and Modulates Type 2 Lung Inflammation. Journal of Immunology. 203, 2520-2531 (2019).
  16. Fujimoto, Y., et al. Pulmonary inflammation and cytokine dynamics of bronchoalveolar lavage fluid from a mouse model of bronchial asthma during A(H1N1)pdm09 influenza infection. Science Reports. 7, 9128 (2017).
  17. Yao, Y., et al. Induction of Autonomous Memory Alveolar Macrophages Requires T Cell Help and Is Critical to Trained Immunity. Cell. 175, 1634-1650 (2018).
  18. Dua, K., Shukla, S. D., Hansbro, P. M. Aspiration techniques for bronchoalveolar lavage in translational respiratory research: Paving the way to develop novel therapeutic moieties. Journal of Biological Methods. 4, 73 (2017).
  19. Van Hoecke, L., et al. Bronchoalveolar Lavage of Murine Lungs to Analyze Inflammatory Cell Infiltration. Journal of Visualized Experiments. (123), e55398 (2017).
  20. Salahuddin, S., et al. Processing of Bronchoalveolar Lavage Fluid and Matched Blood for Alveolar Macrophage and CD4+ T-cell Immunophenotyping and HIV Reservoir Assessment. Journal of Visualized Experiments. (148), e59427 (2019).
  21. Son, K. N., Liang, Z., Lipton, H. L. Double-Stranded RNA Is Detected by Immunofluorescence Analysis in RNA and DNA Virus Infections, Including Those by Negative-Stranded RNA Viruses. Journal of Virology. 89, 9383-9392 (2015).
  22. Monsion, B., et al. Efficient Detection of Long dsRNA in Vitro and in Vivo Using the dsRNA Binding Domain from FHV B2 Protein. Front Plant Sci. 9, 70 (2018).
  23. Redente, E. F., et al. Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology. 301, 510-518 (2011).
  24. Card, J. W., et al. Gender differences in murine airway responsiveness and lipopolysaccharide-induced inflammation. Journal of Immunology. 177, 621-630 (2006).
  25. Gueders, M. M., et al. Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflammation Research. 58, 845-854 (2009).
check_url/it/61183?article_type=t

Play Video

Citazione di questo articolo
Alanazi, H. H., She, L., Li, X. Identification and Characterization of Immunogenic RNA Species in HDM Allergens that Modulate Eosinophilic Lung Inflammation. J. Vis. Exp. (159), e61183, doi:10.3791/61183 (2020).

View Video