Summary

用Janus碱纳米管和纤维素制造用于干细胞粘附的仿生纳米矩阵

Published: May 10, 2020
doi:

Summary

该协议的目的是展示与Janus碱纳米管(JBNTs)和纤维素(FN)的生物仿生纳米三角星(NM)的组装。当与人类间质干细胞 (hMSC) 共同培养时,NMs 在鼓励 hMSC 粘附方面表现出出色的生物活性。

Abstract

一种仿生NM被开发为组织工程生物脚手架,可以增强干细胞锚定。生物仿生NM由JBNT和FN通过水溶液中的自组装而形成。JBNT 的长度为 200-300μm,内有疏水空心通道和外部亲水表面。JBNT 带正电荷,FN 收取负费用。因此,当注入中性液态溶液时,它们通过非价粘合粘合在一起,形成 NM 束。自组装过程在几秒钟内完成,没有任何化学启动器、热源或紫外线。当 NM 解决方案的 pH 度低于 FN 的等电点(pI 5.5-6.0)时,NM 捆绑包将由于带正电荷 FN 的存在而自行释放。

众所周知,NM 在形态上模仿细胞外矩阵 (ECM),因此可以用作注射脚手架,这为增强 hMSC 粘附性提供了绝佳的平台。细胞密度分析和荧光成像实验表明,与负控制相比,NMS显著增加了 hMSC 的锚定。

Introduction

人类间质干细胞(hMSCs)已经显示出沿着不同的间质血统自我更新和自我分化的潜力,这有助于组织1的再生和维持。基于分化潜力,hMSC被认为是间质组织损伤和造血障碍治疗2的候选者。hMSC已经显示出通过增加组织修复,血管生成和减少炎症3促进伤口愈合的能力。然而,如果没有生化或生物材料的帮助,hMSC在预期位置达到目标组织和功能的效率很低虽然各种工程脚手架已被利用来吸引 hMSC 粘附在病变上,但一些部位(如长骨中间的生长板断裂)不容易被传统的预制脚手架使用,这些脚手架可能无法完全适应不规则形状的受伤部位。

在这里,我们开发了一种生物仿生纳米材料,可以就地自组装,并注射到难以到达的目标区域。注射生物脚手架NM由Janus基纳米管(JBNTs)和纤维素(FN)组成。JBNTs,也被称为罗塞特纳米管(RNTs),来自DNA碱基对,特别是胸腺素和腺苷,这里5,6,7。图1所见,纳米管形成时,六个分子的衍生DNA碱基对自组装通过氢键形成平面6。然后,六个分子通过强大的 pi 堆叠相互作用7在平面上相互堆叠,长度可达 200-300μm。JBNT 旨在从形态上模仿胶原纤维,以便 FN 能够对它们做出反应。

FN是一种高分子量的胶粘剂糖蛋白,可以在细胞外基质(ECM)9中找到。这些可以调解干细胞附着在ECM的其他成分,特别是胶原蛋白10。我们设计了 JBNT 来形态模仿胶原纤维,以便 FN 能够在几秒钟内通过非价粘接与它们做出反应,形成 NM。因此,NM 是一个有希望的生物脚手架,可注射到传统制造的脚手架无法到达的骨折部位。在这里,注射NM提供了一个极好的能力,以提高hMSC锚定体外,显示其潜力,作为组织再生的脚手架。

Protocol

1. JBNT的合成 注:JBNT单体是如前11年出版的。 化合物A1的合成 在 25 mL 甲苯和 2.5 mL N、二甲基甲酰胺中准备含有 8.50 克 2 氰乙酸和 9.80 克乙基碳酸的溶液。向下添加 4.90 mL 氯化磷。然后将混合物加热至70°C,并保持搅拌1.5小时。 冷却反应混合物到室温,倒入100克冰水。用乙酸乙酸乙酯(3 x 250 mL)提取水层,用100mL盐水清洗。将有机层干燥…

Representative Results

我们的研究发现,JBNT和FN的NM形成速度很快,在10秒内发生。如图2所示,当JBNT溶液与FN溶液混合并多次吹笛时,获得白色絮凝。NM的形成过程完全是生物仿生。无需外部刺激。制造过程比一些新兴生物材料容易得多,这些生物材料基于紫外线或化学启动器,用于交叉链接13。 我们捕获并分析了 FN、JBNT 和 NM(图 3)?…

Discussion

在这项研究中,我们开发了一种自组装的仿生NM,它是由DNA启发的JBNT和FN形成的。在准备 JBNT 解决方案时,JBNT 亲血粉应该溶解到水中,而不是 PBS 中,因为 PBS 会导致 JBNT 的聚集,从而抑制其组装。此外,如果我们想要观察NM的纳米纤维结构,NM也应该在水中组装,因为PBS中的盐会与NM纤维捆绑在一起,从而大大降低图像的分辨率。

NM已显示出巨大的潜力,作为一个新的组织工?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由NIH(赠款1R01AR072027-01,1R03AR069383-01)、NSF职业奖(1653702)和康涅狄格大学提供财政支持。

Materials

1,2-dichloroethane Alfa Aesar 39121
2-cyanoacetic acid Sigma-Aldrich C88505
4-Dimethylaminopyridine TCI America D1450
8 wells Chambered Coverglass Thermo Fisher 155409
96-well plate Corning 353072
absolute ethanol Thermo Fisher BP2818500
acetone Sigma-Aldrich 179124
acetonitrile Sigma-Aldrich 34851
allylamine Sigma-Aldrich 145831
Basic Plasma Cleaner Harrick Plasma PDC32G
citric acid Sigma-Aldrich 251275
concentrated hydrochloric acid Sigma-Aldrich H1758
Deionized water Thermo Fisher 15230147
dichloromethane Sigma-Aldrich 270997
diethyl ether Sigma-Aldrich 296082
Di-tert-butyl dicarbonate Sigma-Aldrich 361941
ethyl acetate Sigma-Aldrich 319902
ethylcarbamate Sigma-Aldrich U2500
Fibronectin Thermo Fisher PHE0023
Fixative Solution (4 % formaldehyde prepared in PBS) Thermo Fisher R37814
guanidinium hydrochloride Alfa Aesar A13543
hexanes Sigma-Aldrich 227064
Human mesenchymal stem cells Lonza PT-2501
methanol Sigma-Aldrich 34860
methyl iodide Sigma-Aldrich 289566
N,N-Diisopropylethylamine Alfa Aesar A17114
N,N-dimethylformamide Sigma-Aldrich 227056
N-Methylmorpholine N-oxide Alfa Aesar A19802
Osmium tetraoxide Alfa Aesar 45385
Penicillin-Streptomycin Thermo Fisher 15140163
Phosphate Buffer Solution Thermo Fisher 20012050
phosphoryl chloride Sigma-Aldrich 201170
potassium carbonate Sigma-Aldrich 347825
reverse phase column Thermo Fisher 25305-154630
Rhodamine Phalloidin Thermo Fisher R415
silica gel TCI America S0821
sodium bicarbonate Sigma-Aldrich S6014
sodium ethoxide Alfa Aesar L13083
sodium periodide Sigma-Aldrich 71859
sodium sulfate Sigma-Aldrich 239313
sodium sulfite Sigma-Aldrich S0505
sodium triacetoxyborohydride Alfa Aesar B22060
spectrophotometer(NanoDrop One/Oneᶜ UV-Vis) Thermo Fisher ND-ONE-W
Stem Cell Growth Medium BulletKit Lonza PT-3001
tetrahydrofuran Sigma-Aldrich 401757
thioanisole Sigma-Aldrich T28002
toluene Sigma-Aldrich 179418
triethylamine Alfa Aesar A12646
trifluoroacetic acid Alfa Aesar A12198
Triton X-100 Thermo Fisher HFH10
Trypsin-EDTA solution Thermo Fisher 25200056

Riferimenti

  1. Yao, W., et al. Improved mobilization of exogenous mesenchymal stem cells to bone for fracture healing and sex difference. Stem Cells. 34 (10), 2587-2600 (2016).
  2. Salasznyk, R. M., Williams, W. A., Boskey, A., Batorsky, A., Plopper, G. E. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedicine and Biotechnology. 1 (2004), 24-34 (2004).
  3. Hadjiargyrou, M., O’Keefe, R. J. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. Journal of Bone and Mineral Research. 29 (11), 2307-2322 (2014).
  4. De Becker, A., Riet, I. V. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy. World Journal of Stem Cells. 8 (3), 73-87 (2016).
  5. Chen, Y., Song, S., Yan, Z., Fenniri, H., Webster, T. J. Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone. International Journal of Nanomedicine. 6, 1035-1044 (2011).
  6. Song, S., Chen, Y., Yan, Z., Fenniri, H., Webster, T. J. Self-assembled rosette nanotubes for incorporating hydrophobic drugs in physiological environments. International Journal of Nanomedicine. 6, 101-107 (2011).
  7. Fenniri, H., et al. Helical Rosette Nanotubes: Design, Self-Assembly, and Characterization. Journal of the American Chemical Society. 123 (16), 3854-3855 (2001).
  8. Chen, Y., et al. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering. Tissue Engineering Part C Methods. 16 (6), 1233-1243 (2010).
  9. Van den Bogaerdt, A. J., et al. Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells: Are mesenchymal stromal cells involved in scar formation. Wound Repair and Regeneration. 17 (4), 548-558 (2009).
  10. Erickson, H. P., Carrell, N., McDonagh, J. Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand. Journal of Cell Biology. 91 (3), 673-678 (1981).
  11. Chen, Q., Yu, H. C., Chen, Y. P. . U. S. Patent. , (2017).
  12. Zhou, L., et al. Self-assembled biomimetic Nano-Matrix for stem cell Anchorage. Journal of Biomedical Materials and Research. 108, 984-991 (2020).
  13. Jones, M., Leroux, J. Polymeric micelles – a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics. 48 (2), 101-111 (1999).
  14. Singh, P., Schwarzbauer, J. E. Fibronectin and stem cell differentiation – lessons from chondrogenesis. Journal of Cell Science. 125, 3703-3712 (2012).
  15. Martino, M. M., et al. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials. 30 (6), 1089-1097 (2009).
  16. Somaiah, C., et al. Collagen promotes higher adhesion, survival and proliferation of mesenchymal stem cells. PLoS One. 10 (12), 0145068 (2015).
  17. Ogura, N., et al. Differentiation of the human mesenchymal stem cells derived from bone marrow and enhancement of cell attachment by fibronectin. Journal of Oral Science. 46 (4), 207-213 (2004).
  18. Do, A. V., Khorsand, B., Geary, S. M., Salem, A. K. 3D Printing of scaffolds for tissue regeneration applications. Advanced Healthcare Materials. 4 (12), 1742-1762 (2015).
  19. Shi, W., et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Advanced Material. 29, 1701089 (2017).
  20. Journeay, W. S., Suri, S. S., Moralez, J. G., Fenniri, H., Singh, B. Low inflammatory activation by self-assembling Rosette nanotubes in human Calu-3 pulmonary epithelial cells. Small. 4 (6), 817-823 (2008).
  21. Journeay, W. S., Suri, S. S., Moralez, J. G., Fenniri, H., Singh, B. Rosette nanotubes show low acute pulmonary toxicity in vivo. International Journal of Nanomedicine. 3 (3), 373-383 (2008).
check_url/it/61317?article_type=t

Play Video

Citazione di questo articolo
Zhou, L., Yau, A., Zhang, W., Chen, Y. Fabrication of a Biomimetic Nano-Matrix with Janus Base Nanotubes and Fibronectin for Stem Cell Adhesion. J. Vis. Exp. (159), e61317, doi:10.3791/61317 (2020).

View Video