Summary

流变和热测试对粘合系统固化的评价

Published: July 03, 2020
doi:

Summary

提出了一种基于热和流变测量的实验方法,用于描述粘合剂的固化过程,为工业胶粘剂的选择获取有用的信息。

Abstract

分析与粘合剂固化相关的热过程和一旦固化的机械行为研究,提供关键信息,为任何特定应用选择最佳选择。通过比较三种商用粘合剂,描述了基于热分析和流变学的固化特性方法。此处使用的实验技术有热重力分析 (TGA)、差分扫描热量测定 (DSC) 和流变学。TGA 提供有关热稳定性和填料含量的信息,DSC 允许评估与固化反应相关的一些热事件,以及受温度变化影响时固化材料的热变化。流变学从机械角度补充热变换的信息。因此,固化反应可以通过弹性模量(主要是存储模量)、相角和间隙进行跟踪。此外,还表明DSC虽然对研究湿固化粘合剂的固化没有用,但评价无定形系统的低温玻璃过渡是一种非常方便的方法。

Introduction

现在对粘合剂的需求越来越大。当今的行业要求胶粘剂具有越来越多样化的特性,以适应日益多样化的可能的新应用。它使针对每个特定案例选择最合适的选项成为一项艰巨的任务。因此,创建标准方法,根据胶粘剂的特性来描述其特性,将有助于选择过程。在固化过程中对粘合剂进行分析以及固化系统的最终特性对于确定粘合剂是否适用于特定应用至关重要。

研究粘合剂行为最常用的两种实验技术是差分扫描测光(DSC)和动态机械分析(DMA)。流变测量和热重力测试也得到广泛应用。通过它们,可以确定玻璃过渡温度(Tg)和固化余热,这些温度与固化程度1、2有关。

TGA提供有关粘合剂3,4的热稳定性的信息,这对于建立进一步的工艺条件非常有用, 另一方面,流变测量允许确定粘合剂的凝胶时间,分析固化收缩,并定义固化样品5,6,7粘弹性特性,而DSC技术允许测量固化的余热,并辨别一个或多个热过程,可以同时发生在固化8,9。因此,DSC、TGA 和流变方法的组合提供了详细可靠的信息,以开发胶粘剂的完整特性。

有许多关于粘合剂的研究,其中DSC和TGA一起应用10,11,12。也有一些研究,补充DSC与流变测量13,14,15。然而,没有一个标准化的协议,以系统地解决胶粘剂的比较。这种比较可以更好地选择适合不同背景的粘合剂。在这项工作中,提出了一种实验方法,通过结合热分析和流变学对固化过程进行表征。将这些技术作为组合,可以收集有关固化过程中和之后粘合剂行为的信息,以及材料16的热稳定性和Tg。

本文以三种商用粘合剂为例,介绍了涉及DSC、TGA和流变学三种技术的方法。其中一种粘合剂,以下简称S2c,是一种双组胶胶:成分甲含有四氢富二烯甲基丙烯酸酯,B组比含有过氧化苯甲酰。成分 B 通过使四氢富二丙烯酸酯环打开,作为固化反应的发起者。通过自由基聚合机制,单体C+C键与生长的基体发生反应,形成四氢富丽边组17的链。其他粘合剂 T1c 和 T2c 是改性硅烷聚合物粘合剂的同一商业用中的一元和双组分版本。固化过程始于硅烷组18的水解,可由环境湿度(如 T1c)或添加第二个组件(如 T2c)启动。

关于这三种不同系统的应用领域:胶粘剂S2c设计用于替代焊接、铆接、夹紧和其他机械紧固技术,适用于不同类型基材(包括顶部涂层、塑料、玻璃等)的隐蔽接头的高强度紧固。T1c 和 T2c 粘合剂用于金属和塑料的弹性粘合:用于大篷车制造、铁路车辆行业或造船。

Protocol

1. 检查制造商的固化条件 按照制造商的建议固化粘合剂样品,然后通过 TGA 和 DSC 测试对其进行评估。记录特定的固化条件。 固化样品的TGA试验 在 TGA 或同时在 DSC+TGA 设备 (SDT) 中执行热重力测试。 按照以下步骤对固化样品进行热重力测试,以确定无机填料含量和材料开始降解的温度。在进一步测试中不要超过该温度。 打开空气停止器。打开 SDT(或 TGA)?…

Representative Results

为了显示该方法的应用,使用了三种粘合系统(材料表): S2c,双组件系统。 T1c,一种单组分硅烷改性聚合物,其固化反应由水分触发。 T2c,双组件系统。它也是一种硅烷改性聚合物,但第二个成分旨在使固化率与空气中的水分含量更加独立一些。 TGA 分析固化粘合剂的热稳定性和填充量。图 1显示了从三种粘?…

Discussion

每种胶粘剂的初步 TGA 测试始终是一个基本步骤,因为它提供有关材料稳定温度范围的信息。这些信息对于正确设置进一步实验至关重要。此外,TGA 还可能告知填充物内容,这非常有见地了解存储和损耗模量可能不会沿固化交叉。

另一方面,DSC 允许研究大多数热固性系统的固化,但不允许研究那些固化反应是水分触发的系统。流变学允许跟踪任何系统的固化,水分触发与否?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究得到了西班牙科学和创新部[授予MTM2014-52876-R],[MTM2017-82724-R]和加利西亚文化协会(UDC-Navantia投资混合协会[IN853B-2018/02])的部分支持。我们要感谢TA仪器的图像显示使用的流变仪的方案。此图像包含在文章的材料表中。我们还要感谢《热分析和热量测定杂志》允许其使用参考[16]中一些数据,并感谢科学投资中心(CICA)允许使用 其设施。

Materials

2960 SDT TA Instruments Simultaneous DSC/TGA device: Used to perform thermogravimetric tests.
Discovery HR-2 TA Instruments Rheometer to perform rheological test.
MDSC Q2000 TA Instruments Differential Scanning Calorimeter with optional temperature modulation. Used to peform DSC and MDSC tests.
Sikafast 5211NT Sika S2c: a two component system manufactured by Sika. It is based on tetrahydrofurfuryl methacrylate and contains an ethoxylated aromatic amine.
The second component contains benzoyl peroxide as the initiator for the crosslinking reaction.
Teroson MS 939 FR Henkel T1c: manufactured by Henkel, which is a one component sylil-modified-polymer, whose cure reaction is triggered by moisture.
Teroson MS 9399 Henkel T2c: a two component system manufactured by Henkel. It is a sylil-modified-polymer too but the second component is aimed to make the curing rate a little more independent from the moisture content of air.
TRIOS TA Instruments Control Software for the rheometer. Version 4.4.0.41651

Riferimenti

  1. Zhang, Y., Adams, R. D., da Silva, L. F. M. Effects of Curing Cycle and Thermal History on the Glass Transition Temperature of Adhesives. The Journal of Adhesion. 90 (4), 327-345 (2014).
  2. Wisanrakkit, G., Gillham, J. K. The glass transition temperature (Tg) as an index of chemical conversion for a high-Tg amine/epoxy system: Chemical and diffusion-controlled reaction kinetics. Journal of Applied Polymer Science. 41 (11-12), 2885-2929 (1990).
  3. Ji, X., Guo, M. Preparation and properties of a chitosan-lignin wood adhesive. International Journal of Adhesion and Adhesives. 82, 8-13 (2018).
  4. Aliakbari, M., Jazani, M. O., Sohrabian, M., Jouyandeh, M., Saeb, M. R. Multi-nationality epoxy adhesives on trial for future nanocomposite developments. Progress in Organic Coatings. 133, 376-386 (2019).
  5. Kozowyk, P. R. B., Poulis, J. A. A new experimental methodology for assessing adhesive properties shows that Neandertals used the most suitable material available. Journal of Human Evolution. 137, 102664 (2019).
  6. Tenorio-Alfonso, A., Pizarro, M. L., Sánchez, M. C., Franco, J. M. Assessing the rheological properties and adhesion performance on different substrates of a novel green polyurethane based on castor oil and cellulose acetate: A comparison with commercial adhesives. International Journal of Adhesion and Adhesives. 82, 21-26 (2018).
  7. Presser, M., Geiss, P. L. Experimental investigation of the influence of residual stress due to curing shrinkage on the interphase formation in adhesively bonded joints. Procedia Engineering. 10, 2743-2748 (2011).
  8. McHugh, J., Fideu, P., Herrmann, A., Stark, W. Determination and review of specific heat capacity measurements during isothermal cure of an epoxy using TM-DSC and standard DSC techniques. Polymer Testing. 29 (6), 759-765 (2010).
  9. Moussa, O., Vassilopoulos, A. P., Keller, T. Experimental DSC-based method to determine glass transition temperature during curing of structural adhesives. Construction and Building Materials. 28 (1), 263-268 (2012).
  10. Yang, Q., Xian, G., Karbhari, V. M. Hygrothermal ageing of an epoxy adhesive used in FRP strengthening of concrete. Journal of Applied Polymer Science. 107 (4), 2607-2617 (2008).
  11. Campbell, R., Pickett, B., La Saponara, V., Dierdorf, D. Thermal Characterization and Flammability of Structural Epoxy Adhesive and Carbon/Epoxy Composite with Environmental and Chemical Degradation. Journal of Adhesion Science and Technology. 26, 889-910 (2012).
  12. Rahman, M. M., Kim, H. D. Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic groups (I). Journal of Applied Polymer Science. 102 (6), 5684-5691 (2006).
  13. Vega-Baudrit, J., Navarro-Bañón, V., Vázquez, P., Martín-Martínez, J. M. Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. International Journal of Adhesion and Adhesives. 26 (5), 378-387 (2006).
  14. Park, Y. J., Joo, H. S., Kim, H. J., Lee, Y. K. Adhesion and rheological properties of EVA-based hot-melt adhesives. International Journal of Adhesion and Adhesives. 26 (8), 571-576 (2006).
  15. Kim, H., Kim, J., Kim, J. Effects of novel carboxylic acid-based reductants on the wetting characteristics of anisotropic conductive adhesive with low melting point alloy filler. Microelectronics Reliability. 50 (2), 258-265 (2010).
  16. Sánchez-Silva, B., et al. Thermal and rheological comparison of adhesives. Journal of Thermal Analysis and Calorimetry. 138 (5), 3357-3366 (2019).
  17. Full, A. P., et al. Polymerization of tetrahydrofurfuryl methacrylate in three-component anionic microemulsions. Macromolecules. 25, 5157-5164 (1992).
  18. Pizzi, A., Mittal, K. L. . Handbook of adhesive technology. , (1992).
  19. Keenan, M. R. Autocatalytic cure kinetics from DSC measurements: Zero initial cure rate. Journal of Applied Polymer Science. 33 (5), 1725-1734 (1987).
  20. Lee, J. Y., Shim, M. J., Kim, S. W. Autocatalytic cure kinetics of natural zeolite filled epoxy composites. Materials Chemistry and Physics. 48 (1), 36-40 (1997).
  21. Hayaty, M., Beheshty, M. H., Esfandeh, M. Isothermal differential scanning calorimetry study of a glass/epoxy prepreg. Polymers for Advanced Technologies. 22 (6), 1001-1006 (2011).
  22. Lee, E. J., Park, H. J., Kim, S. M., Lee, K. Y. Effect of Azo and Peroxide Initiators on a Kinetic Study of Methyl Methacrylate Free Radical Polymerization by DSC. Macromolecular Research. 26 (4), 322-331 (2018).
  23. Chambon, F., Winter, H. H. Linear Viscoelasticity at the Gel Point of a Crosslinking PDMS with Imbalanced Stoichiometry. Journal of Rheology. 31 (8), 683-697 (1987).
  24. Winter, H. H., Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. Journal of Rheology. 30 (2), 367-382 (1986).
  25. Roland, C. M. Characteristic relaxation times and their invariance to thermodynamic conditions. Soft Matter. 4 (12), 2316 (2008).
check_url/it/61468?article_type=t

Play Video

Citazione di questo articolo
Díaz-Díaz, A., Sánchez-Silva, B., Tarrío-Saavedra, J., López-Beceiro, J., Gómez-Barreiro, S., Artiaga, R. Evaluation of the Curing of Adhesive Systems by Rheological and Thermal Testing. J. Vis. Exp. (161), e61468, doi:10.3791/61468 (2020).

View Video