Summary

在穆林模型中缺血再灌注损伤后干细胞的心肌内传递延迟

Published: September 03, 2020
doi:

Summary

干细胞作为心肌损伤患者的潜在治疗方法不断被研究,然而,干细胞在损伤组织中生存能力的降低和保留会影响其长期疗效。在这份手稿中,我们描述了一种替代干细胞传递方法,该模型采用缺血再灌注损伤的穆林模型。

Abstract

人们对于使用干细胞(SCs)恢复心肌损伤个体的心脏功能有着浓厚的兴趣。最常见的是,心脏干细胞治疗是通过将SC同时与心肌损伤诱导同时提供来研究。然而,这种方法存在两个显著限制:早期敌对的亲炎缺血环境可能会影响移植的SC的生存,并且它并不代表可能使用SC的亚急性梗塞情景。在这里,我们描述了一个两部分的手术程序系列,用于诱导缺血-再灌注损伤和传递中质干细胞(MSCs)。这种干细胞管理方法可以通过规避最初的免疫反应,使受损组织周围的生存能力和保留时间更长。在小鼠中诱导了缺血再灌注损伤的模型,并伴之以间质干细胞(3.0 x 105),稳定地表达着记者基因萤火虫荧光酶在构成表达CMV促进剂下,7天后在心内。通过超声波和生物发光成像分别对动物进行成像,以确认损伤和细胞注射。重要的是,在执行此两程序方法进行 SC 交付时,没有增加的并发症率。这种干细胞施用方法,与利用最先进的报告基因一起,可能允许在临床上常见的慢性缺血情况下,在体内研究移植的SC的生存能力和保留,同时规避最初的亲炎反应。总之,我们建立了一个协议,延迟将干细胞传递到心肌,这可以用来作为促进受损组织再生的潜在新方法。

Introduction

心血管疾病仍然是全世界发病率和死亡率的最常见原因。心脏缺血事件被发现有害于心肌和周围细胞1的整体功能。只有̴0.45-1.0%的心肌细胞在心肌损伤发生后每年再生尽管不断增长的需求和固有的重点开发治疗,治疗帮助受伤组织再生已经很难建立,仍然需要进一步优化3,4,5。,4,5干细胞疗法已被引入,作为在缺血事件后恢复受损组织活力的替代途径;然而,这些疗法的进步已经受到有限的生存和保留细胞到受伤区域6的挑战

缺血事件后心脏的微环境可以定性为缺氧、亲氧化和亲炎,为治疗干细胞适应生存7,8敌对条件。由于免疫反应在受伤后触发,天真的淋巴细胞,巨噬细胞,嗜中性粒细胞和乳腺细胞试图通过去除垂死的细胞和调节组织重塑9,10,119,的过程修复损伤。在缺血后的第一个3天内,炎症处于高峰期,在10,12区释放大量嗜中性粒细胞和单核细胞的亲炎细胞因子。7天后,大部分炎症已经消退,向修复细胞的过渡开始,一直持续到重塑级联完成,大约14天在小鼠13。我们的手术方法是将生物制剂引入心肌中,以绕过缺血再灌注损伤后的峰值先天免疫反应的一种潜在替代方法。同时,它将允许研究任何治疗在亚急性/慢性缺血的情况,其中可能有不同的变量要考虑相比,急性心肌梗死。

Protocol

实验对雌性C57BL/6小鼠进行,年龄为10-12周,体重为20-25克。所有动物程序均符合《实验室动物护理和使用指南》(美国国家科学院实验室动物资源研究所、美国医学博士所贝塞斯达)中规定的标准,并经梅奥诊所医学院机构动物护理和使用委员会(IACUC)批准。 1. 准备和插管 手术前将所有手术器械都去处理。如果要在一次手术中进行多次手术,请在每个动…

Representative Results

第0天,小鼠诱发缺血再灌注损伤,在干细胞植入前一天进行术后超声心动图和心电图。超声波和心电图分析证实梗死和心室收缩功能下降(图1A-D)。进一步检查数据显示,接受缺血性损伤的小鼠的弹射分数和分数缩短率降低,而末体舒张和收缩量增加(表1)。与正常小鼠心脏(图2A)相比,马森三色染色心肌组织7天后受伤(…

Discussion

全世界有8500多万人患有心血管疾病。这些缺血事件的高流行率值得进一步发展和扩大替代疗法,以促进受损组织的再生。传统方法利用缺血再灌注程序在急性环境中,随后给予治疗1。炎症反应处于3-4天之间的高峰期,在心脏缺血事件后,与嗜中性粒细胞,巨噬细胞,和增加细胞因子信号10,12,渗透。在这一段死细?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

0.9% NaCl Irrigation, USP Baxter 0338-0048-04
11×12" Press n' Seal surgical drape, autoclavable SAI Infusion Technologies PSS-SD
24G 3/4" IV catheter tube Jelco 4053
28G x 1/2" 1mL allergy syringe BD 305500 Injection of analgesic
30G x 1/2" 3/10cc insulin syringe Ulticare 08222.0933.56 Injection of stem cells
6-0 S-29, 12" Vicryl suture Ethicon J556G Intercostal, superficial muscle and skin layer incision closure
9-0 BV100-4, 5" Ethilon suture Ethicon 2829G Ligation of the LAD artery
Absorbent underpad Thermo Fischer Scientific 14-206-64 For underneath the animal
Alcohol prep pads, 2 ply, medium Coviden 6818
Anti-fog face mask Halyard 49235
Bonn Strabismus scissors, curved, blunt Fine Science Tools 14085-09
Buprenorphine HCL SR LAB 1mg/ml, 5 ml ZooPharm Pharmacy Buprenorphine narcotic analgesic formulated in a polymer that slows absorption extending duration of action (72 hours duration of activity).
Castroviejo needle holders, curved Fine Science Tools 12061-01
Curity sterile gauze sponges Coviden 397310
Delicate suture tying forceps, 45 angle bent Fine Science Tools 11063-07
Electric Razor Wahl Fur removal
Isoflurane 100 ml Cardinal Health PI23238 Anesthetic
Lab coat
Monoject 1 mL hypodermic syringe Coviden 8881501400
Moria iris forceps, curved, serrated (x2) Fine Science Tools 11370-31
Moria speculum retractor Fine Science Tools 17370-53
Mouse endotracheal intubation kit Kent Scientific
Nair depilatory cream Johnson & Johnson Fur removal
Optixcare eye lube plus Aventix Sterile ocular lubricant
Physiosuite ventilator Kent Scientific
PolyE Polyethylene tubing Harvard Apparatus 72-0191 Temporary compression of LAD artery
Povidone-iodine swabs PDI S41125
Scalpel, 10-blade Bard-Parker 371610
Sterile 3" cotton tipped applicators Cardinal Health C15055-003
Sterile 6" tapered cotton tip applicators Puritan 25-826-5WC
Sterile gloves Cardinal Health N8830
Sterilization pouches Medline MPP100525GS
Surgery cap
Surgical Microscope Leica M125
Suture tying forceps, straight (x2) Fine Science Tools 10825-10
Transpore surgical tape 3M 1527-1
Triple antibiotic ointment G&W Laboratories 11-2683ILNC2 Topical application to prevent infection
Vannas-Tübingen Spring Scissors, curved Fine Science Tools 15004-08
Vetflo vaporizer Kent Scientific

Riferimenti

  1. Franchi, F., et al. The Myocardial Microenvironment Modulates the Biology of Transplanted Mesenchymal Stem Cells. Molecular Imaging Biology. , (2020).
  2. Bergmann, O., et al. Evidence for cardiomyocyte renewal in humans. Science. 324 (5923), 98-102 (2009).
  3. Writing Group, M., et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 133 (4), 38 (2016).
  4. Gersh, B. J., Simari, R. D., Behfar, A., Terzic, C. M., Terzic, A. Cardiac cell repair therapy: a clinical perspective. Mayo Clinic Protocol. 84 (10), 876-892 (2009).
  5. Terzic, A., Behfar, A. Regenerative heart failure therapy headed for optimization. European Heart Journal. 35 (19), 1231-1234 (2014).
  6. Beegle, J., et al. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells. 33 (6), 1818-1828 (2015).
  7. Kubli, D. A., Gustafsson, A. B. Mitochondria and mitophagy: the yin and yang of cell death control. Circulation Research. 111 (9), 1208-1221 (2012).
  8. Psaltis, P. J., et al. Noninvasive monitoring of oxidative stress in transplanted mesenchymal stromal cells. JACC Cardiovascular Imaging. 6 (7), 795-802 (2013).
  9. Peet, C., Ivetic, A., Bromage, D. I., Shah, A. M. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Research. 16 (6), 1101-1112 (2020).
  10. Swirski, F. K., Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nature Reviews Immunology. 18 (12), 733-744 (2018).
  11. Zhang, Z., et al. Mesenchymal Stem Cells Promote the Resolution of Cardiac Inflammation After Ischemia Reperfusion Via Enhancing Efferocytosis of Neutrophils. Journal of the American Heart Association. 9 (5), 014397 (2020).
  12. Saxena, A., Russo, I., Frangogiannis, N. G. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translational Research. 167 (1), 152-166 (2016).
  13. Prabhu, S. D., Frangogiannis, N. G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circulation Research. 119 (1), 91-112 (2016).
  14. Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8 (4), 315-317 (2006).
check_url/it/61546?article_type=t

Play Video

Citazione di questo articolo
Olthoff, M., Franchi, F., Peterson, K. M., Paulmurugan, R., Rodriguez-Porcel, M. Delayed Intramyocardial Delivery of Stem Cells after Ischemia Reperfusion Injury in a Murine Model. J. Vis. Exp. (163), e61546, doi:10.3791/61546 (2020).

View Video