Summary

小鼠B细胞发育的流式细胞学表征

Published: January 22, 2021
doi:

Summary

我们在这里描述了通过流式细胞术对腹膜,脾脏和骨髓组织中小鼠免疫B细胞室异质性的简单分析。该协议可以适应并扩展到其他小鼠组织。

Abstract

广泛的研究已经表征了鼠B细胞在继发性淋巴器官中的发育和分化。B细胞分泌的抗体已被分离出来,并发展成为成熟的治疗方法。在自身免疫易发小鼠或具有修饰免疫系统的小鼠中,小鼠B细胞发育的验证是在小鼠中开发或测试治疗剂的关键组成部分,并且是流式细胞术的适当使用。完善的B细胞流式细胞术参数可用于评估小鼠腹膜,骨髓和脾脏中的B细胞发育,但必须遵守许多最佳实践。此外,B细胞区室的流式细胞术分析也应该补充B细胞发育的额外读数。使用该技术生成的数据可以进一步了解野生型,自身免疫易发小鼠模型以及可用于产生抗体或抗体样分子作为治疗的人源化小鼠。

Introduction

单克隆抗体日益成为许多人类疾病的首选疗法,因为它们已成为主流医学的一部分12。我们之前已经描述了基因工程小鼠,其有效地产生具有小鼠IgH常数的完全人类可变区域的抗体34。最近,我们描述了基因工程小鼠,它们产生具有独特抗原结合的抗体样分子5。抗体由B细胞分泌,形成适应性体液免疫的基础。有两种不同类型的B细胞,B-1和B-2。在哺乳动物中,B-1细胞起源于胎儿肝脏,出生后富集于粘膜组织以及胸膜和腹膜腔,而B-2细胞在出生前起源于胎儿肝脏,此后起源于骨髓(BM)。B-2细胞富集于继发性淋巴器官,包括脾脏和血液678。在BM中,B-2造血祖细胞在Ig mu重链重排开始时开始分化为前B细胞910。Ig重链的成功重排及其组装到前B细胞受体(前BCR)中,以及信号传导和增殖扩增,导致分化为前B细胞。在B前细胞重新排列其Ig kappa(Igκ)之后,或者如果无效,则Ig lambda(Igλ)轻链,它们与μ重链配对,导致表面IgM BCR表达。重要的是要指出,已知IgM表面表达在自身反应性条件下降低,从而有助于功能无反应或无能B细胞的自耐受性1112。未成熟的B细胞随后进入过渡阶段,在那里它们开始共表达IgD并从BM迁移到脾脏。在脾脏中,IgD表达进一步增加,细胞成熟为过渡B细胞的第二阶段,随后完成其成熟状态并发育为边缘区(MZ)或滤泡(Fol)细胞131415。在成年小鼠中,在非疾病环境中,尽管BM中每天产生1000-2000万个未成熟的B细胞,但成熟B细胞的数量保持不变。其中,只有百分之三进入成熟B细胞池。外周B细胞室的大小受到细胞死亡的限制,部分原因是几个因素,包括自我反应性和不完全成熟161718。流式细胞术分析已被广泛用于表征和枚举人类和小鼠中的许多免疫细胞亚区室。虽然人类和小鼠B细胞区室之间存在一些相似之处,但该协议仅适用于小鼠B细胞的分析。该协议的开发目的是对基因工程小鼠进行表型分析,以确定遗传操作是否会改变B细胞发育。流式细胞术在许多其他应用中也非常受欢迎,包括测量细胞活化,功能,增殖,循环分析,DNA含量分析,凋亡和细胞分选 1920

流式细胞术是表征小鼠和人类各种淋巴细胞区室的首选工具,包括脾脏,BM和血液等复杂器官。由于广泛用于流式细胞术的小鼠特异性抗体试剂,该技术不仅可用于研究细胞表面蛋白,还可用于研究细胞内磷酸蛋白和细胞因子,以及功能读数21。在这里,我们展示了流式细胞术试剂如何用于鉴定B细胞亚群,因为它们在继发性淋巴器官中成熟和分化。在优化染色条件,样品处理,正确的仪器设置和数据采集以及最终的数据分析之后,可以利用小鼠B细胞区室的综合流式细胞术分析方案。这种全面的分析基于Hardy及其同事设计的数十年前的命名法,其中发育的BM B-2细胞可以根据其表达的B220,CD43,BP-1,CD24,IgM和IgD22分为不同的组分(部分)。Hardy等人表明,B220+ CD43 BM B细胞可以基于BP-1和CD24(30F1)表达细分为四个亚群(分数A-C’),而B220 + CD43-(暗度至负)BM B细胞可以基于IgD和表面IgM23的差异表达分为三个子集(分数D-F)。A组分(前B细胞)定义为BP-1-CD24(30F1),B组分(早期前B细胞)定义为BP-1-CD24(30F1+,C组(晚期前B细胞)定义为BP-1+ CD24(30F1)+,C级(早期前B细胞)定义为BP-1+和CD24high。此外,D组(前B细胞)被定义为B220 + CD43 IgM B细胞,而E级(新生成的B细胞,未成熟和过渡的组合)被定义为B220 + CD43 IgM + B细胞,部分F(成熟,再循环B细胞)被定义为B220high CD43 IgM + B细胞。 相比之下,根据CD93,CD23和IgM的表达,在脾脏中发现的大多数幼稚B细胞可分为成熟(B220 + CD93)B细胞和过渡(T1,T2,T3)细胞。成熟的B细胞可以根据IgM和CD21 / CD35的表达分解为边缘区和卵泡亚群,并且根据其IgM和IgD表面表达水平,卵泡亚群可以进一步分为成熟的滤泡I型和卵泡II型B细胞亚群24。这些脾B细胞群主要表达Igκ轻链。最后,文献中描述了起源于胎儿肝脏并主要存在于成年小鼠腹膜和胸膜腔中的B-1 B细胞群。这些腹膜B细胞可以通过缺乏CD23表达来与先前描述的B-2 B细胞区分开来。然后,它们被进一步细分为B-1a或B-1b种群,前者由CD5的存在定义,后者由其不存在来定义25。B-1细胞祖细胞在胎儿肝脏中丰富,但在成人BM中未发现。虽然B-1a和B-1b细胞来自不同的祖细胞,但它们都接种腹膜和胸膜腔24。与B-2细胞相比,B-1细胞具有独特的自我更新能力,并负责产生天然IgM抗体。

在许多情况下,B细胞发育中的缺陷可能会出现,包括BCR2627成分的缺陷,影响BCR信号传导强度的信号分子的扰动142829,或调节B细胞存活的细胞因子的破坏3031.淋巴管室的流式细胞术分析有助于表征这些小鼠和许多其他小鼠中的B细胞发育块。淋巴管室流式细胞术分析的一个优点是,它能够对从活解离组织获得的单个细胞进行测量。在不断扩大的荧光团范围内,试剂的可用性允许同时分析多个参数,并能够评估B细胞异质性。此外,通过流式细胞术分析枚举B细胞补充了其他免疫学测定,例如免疫组织化学方法,可视化淋巴器官内的细胞定位,检测循环抗体水平作为体液免疫的衡量标准,以及两个光子显微镜来测量B细胞在真实空间和时间上的反应32

Protocol

所有小鼠研究均由Regeneron的机构动物护理和使用委员会(IACUC)监督和批准。该实验是在杰克逊实验室的三只C57BL / 6J雌性小鼠(17周龄)的组织上进行的。在开始实验之前滴定所有抗体以确定理想浓度。使用补偿珠进行单色补偿时,请确保它们比样品更亮或更亮。将所有缓冲液,抗体和细胞保存在冰上或4°C。 加入活性染料后,在4°C的低光或黑暗中进行所有步骤和孵育。 1. 腹?…

Representative Results

在这里,我们提出了表征小鼠腹膜,BM和脾脏中B细胞发育的门控策略。分析的基础是围绕用活性染料染色的概念形成的,然后根据前向散射区域(FSC-A)和正向散射高度(FSC-H)门控双峰,最后通过根据其FSC-A和侧散射面积(SSC-A)特征选择细胞来门控碎片,这里称为尺寸门,它们反映了相对细胞大小和细胞粒度, 在对感兴趣的人群进行门控之前。 <p class="jove_content" fo:ke…

Discussion

自20世纪80年代以来,淋巴和非淋巴组织的流式细胞术分析使小鼠和人类中的B细胞亚群能够同时鉴定和枚举。它已被用作体液免疫的衡量标准,可以进一步用于评估B细胞功能。该方法利用试剂的可用性来评估小鼠和人类B细胞成熟的不同阶段,通过同时分析多个参数,即使在罕见的人群中也能评估B细胞异质性。如果用于测量复杂的异质性样品,它可以在几分钟内检测单个细胞上的亚群<sup class="xref"…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢马修·斯利曼(Matthew Sleeman)对手稿的批判性阅读。我们还感谢Regeneron的Vivarium运营和流式细胞术核心部门对这项研究的支持。

Materials

0.5 mL safe-lock Eppendorf tubes Eppendorf  22363611 0.5 mL microcentrifuge tube
1.5mL Eppendorf tubes  Eppendorf  22364111 1.5 mL microcentrifuge tube
15 mL Falcon tubes  Corning  352097 15 mL conical tube
18 gauge needle BD 305196
25 gauge needle BD  305124
3 mL syringe BD 309657
70 mM MACS SmartStrainer  Miltenyi Biotec  130-110-916  70 mM cell strainer
96 well U bottom plate  VWR 10861-564
ACK lysis buffer  GIBCO  A1049201 red blood cell lysis buffer
Acroprep Advance 96 Well Filter Plate Pall Corporation 8027 filter plate
B220 eBiosciences 17-0452-82
BD CompBead Anti-Mouse Ig/κ BD 552843 compensation beads
BD CompBead Anti-Rat Ig/κ BD 552844 compensation beads
Bovine Serum Albumin Sigma-Aldrich  A8577 BSA
BP-1 BD 740882
Brilliant Stain Buffer BD 566349 brilliant stain buffer
C-Kit BD 564011
CD11b BD 563168
CD11b BioLegend 101222
CD19 BD 560143
CD21/35 BD 562756
CD23  BD 740216
CD24 (HSA) BioLegend 138504
CD3 BD 561388
CD3 BioLegend 100214
CD43 BD 553270
CD43 BioLegend 121206
CD5 BD 563194
CD93 BD 740750
CD93 BioLegend 136504
DPBS (1x) ThermoFisher 14190-144 DPBS
eBioscience Fixable Viability Dye eFluor 506 ThermoFisher 65-0866-14 viability dye
Extended Fine Tip Transfer Pipette Samco 233 disposable transfer pipette
FACSymphony A3 flow cytometer BD custom order flow cytometer
Fc Block, CD16/CD32 (2.4G2) BD 553142 Fc block
FlowJo Flowjo flow cytometer analysis software
gentleMACS C Tubes  Miltenyi Biotec  130-096-334 automated dissociation tube 
gentleMACS Octo Dissociator with Heaters  Miltenyi Biotec  130-095-937 tissue dissociator instrument
GR1 (Ly6C/6G) BioLegend 108422
IgD BioLegend 405710
IgM eBiosciences 25-5790-82
Kappa BD 550003
Lambda BioLegend 407308
paraformaldehyde, 32% Solution Electron Microscopy Sciences 15714
Ter119 BioLegend 116220
True-Stain Monocyte Blocker BioLegend 426103 monocyte blocker
UltraPure EDTA, pH 8.0 ThermoFisher 15575038 EDTA
Vi-CELL XR Beckman Coulter 731050 cell counter instrument 

Riferimenti

  1. Shepard, H. M., Philips, G. L., Thanos, D., Feldman, M. Developments in therapy with monoclonal antibodies and related proteins. Clinical Medicine. 17 (3), 220 (2017).
  2. Ecker, D. M., Jones, S. D., Levine, H. L. The therapeutic monoclonal antibody market. MAbs. 7 (1), 9-14 (2015).
  3. Macdonald, L. E., et al. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proceedings of the National Academy of Sciences of the United States of America. 111 (14), 5147-5152 (2014).
  4. Murphy, A. J., et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proceedings of the National Academy of Sciences of the United States of America. 111 (14), 5153-5158 (2014).
  5. Macdonald, L. E., et al. Kappa-on-Heavy (KoH) bodies are a distinct class of fully-human antibody-like therapeutic agents with antigen-binding properties. Proceedings of the National Academy of Sciences of the United States of America. 117 (1), 292-299 (2020).
  6. Pieper, K., Grimbacher, B., Eibel, H. B-cell biology and development. Journal of Allergy and Clinical Immunology. 131 (4), 959-971 (2013).
  7. Nagasawa, T. Microenvironmental niches in the bone marrow required for B-cell development. Nature Reviews: Immunology. 6 (2), 107-116 (2006).
  8. Lund, F. E. Cytokine-producing B lymphocytes-key regulators of immunity. Current Opinion in Immunology. 20 (3), 332-338 (2008).
  9. Martensson, I. L., Keenan, R. A., Licence, S. The pre-B-cell receptor. Current Opinion in Immunology. 19 (2), 137-142 (2007).
  10. von Boehmer, H., Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nature Immunology. 11 (1), 14-20 (2010).
  11. Goodnow, C. C., et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature. 334 (6184), 676-682 (1988).
  12. Zikherman, J., Parameswaran, R., Weiss, A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature. 489 (7414), 160-164 (2012).
  13. Melchers, F. Checkpoints that control B cell development. Journal of Clinical Investigation. 125 (6), 2203-2210 (2015).
  14. Henderson, R. B., et al. A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival. Journal of Experimental Medicine. 207 (4), 837-853 (2010).
  15. Pillai, S., Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nature Reviews: Immunology. 9 (11), 767-777 (2009).
  16. Shahaf, G., Zisman-Rozen, S., Benhamou, D., Melamed, D., Mehr, R. B. Cell Development in the Bone Marrow Is Regulated by Homeostatic Feedback Exerted by Mature B Cells. Frontiers in Immunology. 7, 77 (2016).
  17. Nemazee, D. Mechanisms of central tolerance for B cells. Nature Reviews: Immunology. 17 (5), 281-294 (2017).
  18. Petkau, G., Turner, M. Signalling circuits that direct early B-cell development. Biochemical Journal. 476 (5), 769-778 (2019).
  19. McKinnon, K. M. Flow Cytometry: An Overview. Current Protocols in Immunology. 120, 1-5 (2018).
  20. Betters, D. M. Use of Flow Cytometry in Clinical Practice. Journal of the Advanced Practioner in Oncology. 6 (5), 435-440 (2015).
  21. Maecker, H. T., McCoy, J. P., Nussenblatt, R. Standardizing immunophenotyping for the Human Immunology Project. Nature Reviews: Immunology. 12 (3), 191-200 (2012).
  22. Van Epps, H. L. Bringing order to early B cell chaos. Journal of Experimental Medicine. 203 (6), 1389 (2006).
  23. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D., Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. Journal of Experimental Medicine. 173 (5), 1213-1225 (1991).
  24. Allman, D., Pillai, S. Peripheral B cell subsets. Current Opinion in Immunology. 20 (2), 149-157 (2008).
  25. Shapiro-Shelef, M., Calame, K. Regulation of plasma-cell development. Nature Reviews: Immunology. 5 (3), 230-242 (2005).
  26. Kitamura, D., Roes, J., Kuhn, R., Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 350 (6317), 423-426 (1991).
  27. Keenan, R. A., et al. Censoring of autoreactive B cell development by the pre-B cell receptor. Science. 321 (5889), 696-699 (2008).
  28. Chan, V. W., Meng, F., Soriano, P., DeFranco, A. L., Lowell, C. A. Characterization of the B lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation. Immunity. 7 (1), 69-81 (1997).
  29. Zikherman, J., Doan, K., Parameswaran, R., Raschke, W., Weiss, A. Quantitative differences in CD45 expression unmask functions for CD45 in B-cell development, tolerance, and survival. Proceedings of the National Academy of Sciences of the United States of America. 109 (1), 3-12 (2012).
  30. Miyamoto, A., et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature. 416 (6883), 865-869 (2002).
  31. Mecklenbrauker, I., Kalled, S. L., Leitges, M., Mackay, F., Tarakhovsky, A. Regulation of B-cell survival by BAFF-dependent PKCdelta-mediated nuclear signalling. Nature. 431 (7007), 456-461 (2004).
  32. Okada, T., et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biology. 3 (6), 150 (2005).
  33. Robinson, J. P. Flow Cytometry. Encyclopedia of Biomaterials and Biomedical Engineering. , 630-640 (2004).
  34. Lugli, E., Roederer, M., Cossarizza, A. Data analysis in flow cytometry: the future just started. Cytometry A. 77 (7), 705-713 (2010).
  35. Cossarizza, A., et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. European Journal of Immunology. 47 (10), 1584 (2017).
  36. Bigos, M. Separation index: an easy-to-use metric for evaluation of different configurations on the same flow cytometer. Current Protocols in Cytometry. , 21 (2007).
  37. Pillai, S., Mattoo, H., Cariappa, A. B. B cells and autoimmunity. Current Opinion in Immunology. 23 (6), 721-731 (2011).
check_url/it/61565?article_type=t

Play Video

Citazione di questo articolo
Harris, F. M., Meagher, K. A., Zhong, M., Daniel, B. J., Eckersdorff, M., Green, J. A., Voronina, V., Guo, C., Limnander, A., Macdonald, L. E. Flow Cytometric Characterization of Murine B Cell Development. J. Vis. Exp. (167), e61565, doi:10.3791/61565 (2021).

View Video