Summary

使用光学相干断层扫描对啮齿动物模型中眼部疾病的体内结构评估

Published: July 24, 2020
doi:

Summary

在这里,我们描述了使用光谱域光学相干断层扫描(SD-OCT)在视网膜变性,青光眼,糖尿病视网膜病变和近视模型中可视化体内视网膜和眼部结构。

Abstract

光谱域光学相干断层扫描(SD-OCT)可用于可视化体内视网膜和眼部结构 在研究中,SD-OCT是评估和表征各种视网膜和眼部疾病和损伤模型变化的宝贵工具。在光诱导的视网膜变性模型中,SD-OCT可用于跟踪感光层随时间推移的变薄。在青光眼模型中,SD-OCT可用于监测视网膜神经纤维层减少和视网膜总厚度,并观察诱发眼高压后的视神经拔罐情况。在糖尿病啮齿动物中,SD-OCT帮助研究人员观察到总视网膜厚度减少以及特定视网膜层厚度减少,特别是视网膜神经纤维层随着疾病进展而减少。在近视小鼠模型中,SD-OCT可用于评估轴向参数,例如轴向长度变化。SD-OCT的优势包括眼部结构的活体成像,定量跟踪眼部尺寸随时间变化的能力,以及快速的扫描速度和高分辨率。在这里,我们详细介绍了SD-OCT的方法,并展示了其在我们的实验室中用于视网膜变性,青光眼,糖尿病视网膜病变和近视模型的示例。方法包括麻醉,SD-OCT成像和处理用于厚度测量的图像。

Introduction

光谱域光学相干断层扫描(SD-OCT)是一种精确的高分辨率成像方式,允许临床医生和研究人员无创地检查眼部结构。这种成像技术基于干涉测量法,以微米尺度12捕获体内三维视网膜图像。它已成为视觉研究和临床中最常用的成像方式之一,因为它易于检测和准确检测病理特征,例如结构缺陷和/或视网膜层和视网膜下液变薄3。在使用视觉相关疾病的动物模型的研究中,SD-OCT提供了关于结构和功能与其组织病理学起源之间关系的基本无创分析4。由于其分辨率(高达2-3微米,取决于眼睛的深度5),SD-OCT能够检测到视网膜层厚度的微小变化。这种类型的分析可以为疾病进展提供基本信息,并评估神经保护方法和治疗视力相关疾病的疗效。

SD-OCT是组织学检查结构的无创替代方法,两者已被证明是相关的6。虽然SD-OCT不能达到细胞分辨率,但它确实允许在动物中进行纵向研究。这是有利的,因为随着时间的推移,可以在个体动物中跟踪疾病进展,而不是必须在特定时间点对动物实施安乐死。随着成像技术的不断改进,SD-OCT技术也将不断发展,提供增强的图像质量以及详细评估视网膜血管功能等生物过程的能力。自 1991 年问世以来,SD-OCT 技术在分辨率、速度和灵敏度方面都取得了巨大进步7。

本研究利用SD-OCT系统量化视网膜变性、青光眼和糖尿病视网膜病变啮齿动物模型中视网膜层的变化。这里使用的SD-OCT系统是一种傅里叶域OCT系统,它利用低功耗、近红外光实时采集、处理和存储深度分辨图像。SD-OCT 系统在 800 nm 波段具有扩展的深度成像能力,可提供 8 mm 深度和 4 μm 分辨率。在傅里叶域检测中,来自组织的散射光与参考路径之间的干涉信号被傅里叶变换,以构建散射强度8的轴向扫描和/或轴向深度剖面。对于这里的研究,OCT束在所需的视网膜结构上扫描,同时连续获取轴向扫描。通常,扫描图案将二维网格(B扫描)作为线性一维扫描线(A扫描)的集合获取,这些线对应于使用光栅扫描图案的2D横截面图像。对于专注于小鼠近视的研究,该系统还用于测量眼部结构的尺寸(例如角膜厚度、晶状体厚度、玻璃体室深度和轴向长度)。

目前的系统允许用户设计自己的协议,创建可以根据感兴趣的眼部结构进行定制和选择的扫描。这些用户定义的协议中具有的主要扫描功能使这种成像技术用户友好。对于图像分析,我们在数学建模程序中开发了定制编程。SD-OCT是一种强大的工具,可以无创地识别和量化眼部结构的病理形态变化,并监测与视力相关的疾病进展。

Protocol

所描述的所有程序均已获得亚特兰大退伍军人事务机构动物护理和使用委员会的批准,并符合美国国立卫生研究院关于实验动物护理和使用指南(NIH出版物,第8版, 2011年更新)。 注意:用于开发以下协议的 SD-OCT 系统在 材料表中进行了描述。虽然某些程序特定于该特定系统,但整体方法可以适用于其他OCT设备和动物模型。此外,在我们的实验室中,这?…

Representative Results

如果获得高质量的图像,从而可以可靠地测量眼部尺寸,则认为SD-OCT是成功的。在这里,使用视网膜变性,青光眼,糖尿病视网膜病变和近视的模型说明了SD-OCT的各种用途。 在光诱导的视网膜变性(LIRD)模型中,暴露于强光(10,000勒克斯)会诱导视网膜中感光细胞的变性9。与未受损(对照)小鼠相比,具有代表性的SD-OCT图像显示LIRD BALB / c小鼠视网膜中含…

Discussion

体内眼部结构的高分辨率成像可以评估视网膜和眼部随时间的变化。在该协议中,SD-OCT被证明可以捕获视网膜变性,青光眼,糖尿病视网膜病变和近视模型中体内眼部结构的差异。

执行SD-OCT时最关键的方面是获得视网膜或其他感兴趣的眼部结构的清晰图像。重要的是要花时间确保视网膜完全居中并具有出色的清晰度。啮齿动物的沉重呼吸会导致嘈杂的图像(实际上可以看到?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了退伍军人事务部康复研发服务职业发展奖(CDA-1,RX002111;CDA-2;RX002928)授予RSA,优异奖(RX002615)和研究职业科学家奖(RX003134)授予MTP,职业发展奖(CDA-2,RX002342)授予AJF,EY028859授予MTP,NEI核心资助P30EY006360,预防失明研究和基金会抗盲。

Materials

1% tropicamide Sandoz Sandoz #6131403550; NDC- 24208-585-59
0.5% tetracaine Alcon NDC 0065-0741-12
AIM-RAS G3 120 V Leica Bioptigen 90-AIMRAS-G3-120 Specialized platform to hold the OCT Scanner Head for mice
Celluvisc gel REFRESH CELLUVISC #4554; NDC-0023-4554-30
G3 18 mm Telecentric Lens Leica Bioptigen 90-BORE-G3-18
G3 Mouse Lens Leica Bioptigen 90-BORE-G3-M
G3 Rat Lens Leica Bioptigen 90-BORE-G3-R
heating pad Fabrication 11-1130
InVivoVue software Leica Bioptigen Specialized software that pairs with the Leica Bioptigen SD-OCT system
MATLAB Mathworks mathematical modeling program
Mouse/Rat Kit Leica Bioptigen 90-KIT-M/R Mouse/rat rodent alignment system
saline ADDIPAK 200-39
System Envisu R4300 VHR 120 V Leica Bioptigen 90-R4300-V1-120 SD-OCT system

Riferimenti

  1. Wojtkowski, M., et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express. 12 (11), 2404-2422 (2004).
  2. Nassif, N., et al. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Optics Express. 12 (3), 367-376 (2004).
  3. Theelen, T., Teussink, M. M. Inspection of the Human Retina by Optical Coherence Tomography. Methods in Molecular Biology. 1715, 351-358 (2018).
  4. Nakazawa, M., Hara, A., Ishiguro, S. I. Optical Coherence Tomography of Animal Models of Retinitis Pigmentosa: From Animal Studies to Clinical Applications. Biomed Research International. 2019, 8276140 (2019).
  5. Drexler, W., et al. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Medicine. 7 (4), 502-507 (2001).
  6. VanLeeuwen, J. E., et al. Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience Research. 88 (3), 650-668 (2010).
  7. Tian, J., et al. Performance evaluation of automated segmentation software on optical coherence tomography volume data. Journal of Biophotonics. 9 (5), 478-489 (2016).
  8. Kraus, M. F., et al. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomedical Optics Express. 3 (6), 1182-1199 (2012).
  9. Boatright, J. H., et al. Tool from ancient pharmacopoeia prevents vision loss. Molecular Vision. 12, 1706-1714 (2006).
  10. Morrison, J. C., et al. A rat model of chronic pressure-induced optic nerve damage. Experimental Eye Research. 64 (1), 85-96 (1997).
  11. Feola, A. J., et al. Menopause exacerbates visual dysfunction in experimental glaucoma. Experimental Eye Research. 186, 107706 (2019).
  12. Goto, Y., Kakizaki, M., Masaki, N. Production of spontaneous diabetic rats by repetition of selective breeding. The Tohoku Journal of Experimental Medicine. 119 (1), 85-90 (1976).
  13. Allen, R. S., et al. Retinal Deficits Precede Cognitive and Motor Deficits in a Rat Model of Type II Diabetes. Investigative Ophthalmolology & Visual Science. 60 (1), 123-133 (2019).
  14. Stone, R. A., et al. Altered ocular parameters from circadian clock gene disruptions. PLoS One. 14 (6), 0217111 (2019).
  15. Chakraborty, R., et al. Circadian rhythms, refractive development, and myopia. Ophthalmic & Physiological Optics. 38 (3), 217-245 (2018).
  16. Davies, E. C., et al. Retinal ganglion cell layer volumetric assessment by spectral-domain optical coherence tomography in multiple sclerosis: application of a high-precision manual estimation technique. Journal of Neuro-ophthalmology. 31 (3), 260-264 (2011).
  17. Carnevali, A., et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetologica. 54 (7), 695-702 (2017).
  18. Springelkamp, H., et al. Population-based evaluation of retinal nerve fiber layer, retinal ganglion cell layer, and inner plexiform layer as a diagnostic tool for glaucoma. Investigative Ophthalmology & Visual Science. 55 (12), 8428-8438 (2014).
  19. Allen, R. S., et al. Long-Term Functional and Structural Consequences of Primary Blast Overpressure to the Eye. Journal of Neurotrauma. 35 (17), 2104-2116 (2018).
  20. Zhao, D., et al. Age-related changes in the response of retinal structure, function and blood flow to pressure modification in rats. Scientific Reports. 8 (1), 2947 (2018).
  21. Schmucker, C., Schaeffel, F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Research. 44 (16), 1857-1867 (2004).
  22. Aung, M. H., Kim, M. K., Olson, D. E., Thule, P. M., Pardue, M. T. Early visual deficits in streptozotocin-induced diabetic long evans rats. Investigative Ophthalmology & Visual Science. 54 (2), 1370-1377 (2013).
  23. Puzyeyeva, O., et al. High-Resolution Optical Coherence Tomography Retinal Imaging: A Case Series Illustrating Potential and Limitations. Journal of Ophthalmology. 2011, 764183 (2011).
  24. Liu, A. S., et al. Topography and pachymetry maps for mouse corneas using optical coherence tomography. Experimental Eye Research. 190, 107868 (2020).
  25. Mohan, K., Kecova, H., Hernandez-Merino, E., Kardon, R. H., Harper, M. M. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury. Investigative Ophthalmology & Visual Science. 54 (5), 3440-3450 (2013).
  26. Harper, M. M., et al. Blast-Mediated Traumatic Brain Injury Exacerbates Retinal Damage and Amyloidosis in the APPswePSENd19e Mouse Model of Alzheimer’s Disease. Investigative Ophthalmology Visual Science. 60 (7), 2716-2725 (2019).
  27. Zhang, M., et al. Advanced image processing for optical coherence tomographic angiography of macular diseases. Biomedical Optics Express. 6 (12), 4661-4675 (2015).
  28. Muhlfriedel, R., et al. Optimized Subretinal Injection Technique for Gene Therapy Approaches. Methods in Molecular Biology. 1834, 405-412 (2019).
  29. Adekunle, A. N., et al. Integration of Perforated Subretinal Prostheses With Retinal Tissue. Translational Vision Science & Technology. 4 (4), 5 (2015).
  30. Sajdak, B. S., et al. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology. Experimental Eye Research. 185, 107683 (2019).
  31. Dominik Fischer, M., et al. Detailed functional and structural characterization of a macular lesion in a rhesus macaque. Documenta Ophthalmologica. 125 (3), 179-194 (2012).
  32. Hagag, A. M., Gao, S. S., Jia, Y., Huang, D. Optical coherence tomography angiography: Technical principles and clinical applications in ophthalmology. Taiwan Journal of Ophthalmology. 7 (3), 115-129 (2017).
  33. Treister, A. D., et al. Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT Angiography. Translational Vision Science & Technology. 7 (5), 19 (2018).
check_url/it/61588?article_type=t

Play Video

Citazione di questo articolo
Allen, R. S., Bales, K., Feola, A., Pardue, M. T. In vivo Structural Assessments of Ocular Disease in Rodent Models using Optical Coherence Tomography. J. Vis. Exp. (161), e61588, doi:10.3791/61588 (2020).

View Video