Summary

结合表观遗传修饰和生物力学线索的两步策略,以产生哺乳动物多能细胞

Published: August 29, 2020
doi:

Summary

我们在这里提出了一种将化学表观遗传擦除与机械检测相关线索相结合的方法,以有效地产生哺乳动物多能细胞,而无需基因转染或逆转录病毒载体。因此,这种策略对转化医学很有希望,并且代表了干细胞类器官技术的显着进步。

Abstract

细胞表型可以用不同的方法逆转或修饰,具有每种技术特有的优点和局限性。在这里,我们描述了一种新策略,该策略将化学表观遗传擦除与机械检测相关线索相结合,以产生哺乳动物多能细胞。需要两个主要步骤。在第一步中,成体成熟(终末分化)细胞暴露于表观遗传橡皮擦5-氮杂胞苷以驱动它们进入多能状态。该方案的这一部分是基于对控制细胞命运和分化的表观遗传机制的日益了解而开发的,并且涉及使用表观遗传修饰剂来消除细胞分化状态,然后驱动进入瞬时高可塑性窗口。

在第二步中,将擦除的细胞封装在聚四氟乙烯(PTFE)微生物反应器(也称为Liquid Marbles)中,以促进3D细胞重排以扩展并稳定地保持获得的高可塑性。PTFE是一种非反应性疏水性合成化合物,其使用允许产生细胞微环境,这在传统的2D培养系统中无法实现。该系统通过生物机械检测相关线索鼓励和促进多能性的维持。

这里描述的技术程序是允许在成人体细胞中诱导和维持高可塑性状态的简单策略。该协议允许在所有测试的哺乳动物物种中衍生出高可塑性细胞。由于它不涉及基因转染的使用,并且没有病毒载体,因此它可能代表了转化医学应用的显着技术进步。此外,微生物反应器系统通过体外重新创建特定的微环境,允许长期培养高可塑性细胞,即ESC,iPSCs,表观遗传擦除细胞和MSC,从而为干细胞类器官技术提供了显着的进步。

Introduction

在过去的几十年里,被广泛接受的单向进展到细胞承诺和分化的概念被完全修改。已经证明,细胞规格可以颠倒过来,并且使用不同的方法可以将终末分化的细胞推向不那么投入和更高的宽容状态。

在提出的几种方法中,最有前途的方法之一涉及使用化合物诱导细胞进入所谓的化学诱导多能性。这种方法中使用的小分子能够相互作用并修饰成年成熟细胞的表观遗传特征,从而避免了对任何转基因和/或病毒载体12345678910的需求。.最近的许多研究表明,通过提供诱导高甲基化基因11,12,13,1415再激活的特定生化和生物刺激可以将细胞从一种表型切换到另一种表型。这些去甲基化事件允许将终末分化的细胞转化为原始祖细胞,多能或高可塑性/多能细胞12345678910

同时,许多研究最近都集中在理解机械检测相关线索上,更具体地说,是使用机械力直接影响细胞可塑性和/或分化的可能性16171819。事实上,已经清楚地表明,细胞外基质(ECM)在控制细胞命运中起着关键作用。特别是,ECM产生的生物力学和生物物理信号直接调节分子机制和信号通路,影响细胞行为和功能2021。这些最近的数据为开发新型3D培养系统铺平了道路,这些系统更接近于模仿体内细胞微环境,复制驱动细胞行为的机械和物理刺激。

我们在这里描述了一个两步方案,它将化学表观遗传擦除与机械衰老相关线索相结合,以产生哺乳动物多能细胞。在第一步中,将细胞与去甲基化分子5-氮杂胞苷(5-氮杂-CR)一起孵育。该试剂能够通过直接的10-11易位2(TET2)介导的作用810 和间接抑制DNA甲基转移酶(DNMT)2223的组合作用来诱导显着的全局DNA去甲基化。该步骤诱导表观遗传阻滞的去除,随后重新激活多能性相关基因表达,因此产生高可塑性细胞123810,以下称为“表观遗传擦除细胞”。在第二步中,将细胞封装在3D培养系统中。为此,将非反应性疏水性合成化合物聚四氟乙烯(PTFE;粒径为1μm)用作微生物反应器,其允许创建通过使用传统2D培养系统无法实现的细胞微环境10。PTFE粉末颗粒粘附在液滴的表面,其中细胞被重新悬浮并将液核与支撑表面隔离开来,同时允许内部液体和周围环境24之间的气体交换。由此获得的“PTFE微生物反应器”,也称为“液体大理石”,鼓励细胞彼此自由相互作用,促进3D细胞重排252627,并通过生物机械测量相关线索10延伸并稳定地维持获得的高可塑性状态。

Protocol

所有研究均由米兰大学伦理委员会审查和批准。所有动物实验均按照美国国立卫生研究院(NIH)发布的《实验动物护理和使用指南》进行。从健康的成年个体中分离人类细胞已获得米兰Ospedale Maggiore Policlinico伦理委员会的批准。我们研究中的所有方法都是根据批准的指南进行的。 1. 皮肤成纤维细胞分离 注意:下面描述的所有程序都可以应用于从不同哺乳动…

Representative Results

本方案描述了从成体细胞生成和稳定维持哺乳动物多能细胞的所有步骤。这种方法已经成功地从不同的哺乳动物物种(即小鼠,猪和人类)中分离出成纤维细胞。这里报道的代表性结果是从所有细胞系获得的,无论来源物种如何。 形态学分析表明,在与去甲基化剂5-氮杂-CR孵育18小时后,成纤维细胞封装在PTFE微生物反应器(3D Post 5-aza-CR)聚集体中并形成3D球形结构,显示出均…

Discussion

在过去的几十年里,一些研究的重点是制定策略,使终末分化的细胞恢复到不那么投入和更高的宽容状态。这里描述的方案允许从成体成熟的终末分化细胞开始产生和长期维持多能细胞。该方法结合了两个独立的步骤,涉及诱导高允许状态,这是通过化学表观遗传擦除实现的,并使用3D培养系统确保其后续维护。

在PTFE包封的细胞中观察到的3D球体结构的形成(

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由Carraresi基金会和MiND FoodS Hub ID:1176436资助。所有作者都是COST Action CA16119体外3-D全细胞指导和健身(CellFit)的成员。

Materials

2-Mercaptoethanol Sigma-Aldrich M7522 Component of ESC medium
5-Azacytidine Sigma-Aldrich A2385 5-aza-CR, for fibroblast epigenetic erasing
Adenosine Sigma-Aldrich A4036 Component of nucleoside mix for ESC medium
Antibiotic Antimycotic Solution (100×) Sigma-Aldrich A5955 Component of fibroblast and ESC media
CFX96 Real-Time PCR Bio-Rad Laboratories NA Thermal cycler for quantitative PCR
Cytidine Sigma-Aldrich C4654 Component of nucleoside mix for ESC medium
DMEM, high glucose, pyruvate Thermo Fisher Scientific 41966052 For fibroblast isolation and culture medium
DMEM, low glucose, pyruvate Thermo Fisher Scientific 31885023 For ESC medium
Dulbecco’s Phosphate Buffered Saline Sigma-Aldrich D5652 PBS; for biopsy and cell wash and for solution preparation
Dynabeads mRNA DIRECT Micro Purification Kit Thermo Fisher Scientific 61021 mRNA estraction
ESGRO Recombinant Mouse LIF Protein Sigma-Aldrich ESG1106 Component of ESC medium
Fetal Bovine Serum, qualified, heat inactivated Thermo Fisher Scientific 10500064 Component of fibroblast and ESC media
FGF-Basic (AA10-155) Recombinant Human Protein Thermo Fisher Scientific PHG0024 Component of ESC medium
Gelatin from porcine skin Sigma-Aldrich G1890 For dish coating
GeneAmp PCR System 2700 Applied Biosystems NA Thermal cycler for qualitative PCR
Global DNA Methylation ELISA Kit CELL BIOLABS STA-380 Methylation study
GoTaq G2 Flexi DNA Polymerase Promega M7801 Qualitative PCR
Guanosine Sigma-Aldrich G6264 Component of nucleoside mix for ESC medium
Ham's F-10 Nutrient Mix Thermo Fisher Scientific 31550031 For ESC medium
KnockOut Serum Replacement Thermo Fisher Scientific 10828028 Component of ESC medium
KOVA glasstic slide 10 with grids Hycor Biomedical 87144 For cell counting
Leica MZ APO Stereo Microscope Leica NA For organoid observation
L-Glutamine solution Sigma-Aldrich G7513 Component of fibroblast and ESC media
MEM Non-Essential Amino Acids Solution (100X) Thermo Fisher Scientific 11140035 Component of ESC medium
Millex-GS 0.22 µm pore filters Millipore SLGS033SB For solution sterilization
M-MLV Reverse Transcriptase, RNase H Minus, Point Mutant Promega M3681 mRNA reverse transcription
Multiskan FC Microplate Photometer Thermo Fisher Scientific 51119000 For ELISA plate reading
Nikon Eclipse TE300 Inverted Phase Contrast Microscope Nikon NA For cell observation
Perkin Elmer Thermal Cycler 480 Perkin Elmer NA Thermal cycler for reverse transcription
Poly(tetrafluoroethylene) 1 μm particle size Sigma-Aldrich 430935 For generating micro-bioreactor
PureLink Genomic DNA Mini Kit Thermo Fisher Scientific K182001 Genomic DNA estraction
TaqMan Gene Expression Cells-to-CT Kit Thermo Fisher Scientific AM1728 Quantitative PCR
Thymidine Sigma-Aldrich T1895 Component of nucleoside mix for ESC medium
Tissue Culture Dish 100X20 mm, Standard Sarstedt 833902 For fibroblast isolation
Tissue Culture Dish 35X10 mm, Standard Sarstedt 833900 For Fibroblast isolation
Tissue Culture Dish 35X10 mm, Suspension Sarstedt 833900500 Bacteriology petri dish for liquid marble culture
Tissue Culture Plate 96 Well,Standard,F Sarstedt 833924005 For liquid marble culture
Trypsin-EDTA solution Sigma-Aldrich T3924 For fibroblast dissociation
Tube 15ml, 120x17mm, PS Sarstedt 62553041 For cell suspension centrifugation
Uridine Sigma-Aldrich U3003 Component of nucleoside mix for ESC medium

Riferimenti

  1. Pennarossa, G., et al. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proceedings of the National Academy of Sciences of the United States of America. 110 (22), 8948-8953 (2013).
  2. Pennarossa, G., et al. Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Reviews and Reports. 10 (1), 31-43 (2014).
  3. Brevini, T. A. L., et al. Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Reviews and Reports. 10 (5), 633-642 (2014).
  4. Mirakhori, F., Zeynali, B., Kiani, S., Baharvand, H. Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell Journal. 17 (1), 153-158 (2015).
  5. Tan, S. J., et al. Muscle tissue engineering and regeneration through epigenetic reprogramming and scaffold manipulation. Scientific Reports. 5, 16333 (2015).
  6. Brevini, T. A. L., Pennarossa, G., Acocella, F., Brizzola, S., Zenobi, A., Gandolfi, F. Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. Veterinary Journal. 211, 52-56 (2016).
  7. Chandrakanthan, V., et al. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proceedings of the National Academy of Sciences of the United States of America. 113 (16), 2306-2315 (2016).
  8. Manzoni, E. F. M., et al. 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Scientific Reports. 6, 37017 (2016).
  9. Pennarossa, G., et al. Epigenetic erasing and pancreatic differentiation of dermal fibroblasts into insulin-producing cells are boosted by the use of low-stiffness substrate. Stem Cell reviews and reports. 14 (3), 398-411 (2018).
  10. Pennarossa, G., et al. Use of a PTFE micro-bioreactor to promote 3D cell rearrangement and maintain high plasticity in epigenetically erased fibroblasts. Stem Cell Reviews and Reports. 15 (1), 82-92 (2019).
  11. Constantinides, P. G., Jones, P. A., Gevers, W. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature. 267 (5609), 364-366 (1977).
  12. Taylor, S. M., Jones, P. A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 17 (4), 771-779 (1979).
  13. Taylor, S. M., Constantinides, P. A., Jones, P. A. 5-Azacytidine, DNA methylation, and differentiation. Current Topics in Microbiology and Immunology. 108, 115-127 (1984).
  14. Jones, P. A. Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation. Pharmacology & Therapeutics. 28 (1), 17-27 (1985).
  15. Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., Robertson, K. D. DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Molecular and Cellular Biology. 28 (2), 752-771 (2008).
  16. Vining, K. H., Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews. Molecular Cell Biology. 18 (12), 728 (2017).
  17. Matamoro-Vidal, A., Levayer, R. Multiple influences of mechanical forces on cell competition. Current Biology. 29 (15), 762-774 (2019).
  18. Yim, E. K., Sheetz, M. P. Force-dependent cell signaling in stem cell differentiation. Stem Cell Research & Therapy. 3 (5), 41 (2012).
  19. Kumar, A., Placone, J. K., Engler, A. J. Understanding the extracellular forces that determine cell fate and maintenance. Development. 144 (23), 4261-4270 (2017).
  20. Bissell, M. J., Rizki, A., Mian, I. S. Tissue architecture: the ultimate regulator of breast epithelial function. Current Opinion in Cell Biology. 15 (6), 753-762 (2003).
  21. Streuli, C. H., et al. Laminin mediates tissue-specific gene expression in mammary epithelia. The Journal of Cell Biology. 129 (3), 591-603 (1995).
  22. Christman, J. K. 5-Azacytidine and 5-aza-2[prime]-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 21, 5483-5495 (2002).
  23. Stresemann, C., Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. International Journal of Cancer. 123 (1), 8-13 (2008).
  24. Ledda, S., Idda, A., Kelly, J., Ariu, F., Bogliolo, L., Bebbere, D. A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor. Journal of Assisted Reproduction and Genetics. 33 (4), 513-518 (2016).
  25. Vadivelu, R. K., et al. Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Scientific Reports. 5, 15083 (2015).
  26. Vadivelu, R. K., Kamble, H., Munaz, A., Nguyen, N. T. Liquid Marble as bioreactor for engineering three-dimensional toroid tissues. Scientific Reports. 7 (1), 12388 (2017).
  27. Vadivelu, R. K., Kamble, H., Munaz, A., Nguyen, N. T. Liquid Marbles as bioreactors for the study of three-dimensional cell interactions. Biomedical Microdevices. 19 (2), 31 (2017).
  28. Varelas, X., et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biology. 10 (7), 837-848 (2008).
  29. Panciera, T., et al. Induction of Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expression of YAP/TAZ. Cell Stem Cell. 19 (6), 725-737 (2016).
  30. Pennarossa, G., Paffoni, A., Ragni, G., Gandolfi, F., Brevini, T. A. L. Rho signaling-directed YAP/TAZ regulation encourages 3D spheroid colony formation and boosts plasticity of parthenogenetic stem cells. Advances in Experimental Medicine and Biology. 1237, 49-60 (2020).
check_url/it/61655?article_type=t

Play Video

Citazione di questo articolo
Pennarossa, G., Ledda, S., Arcuri, S., Gandolfi, F., Brevini, T. A. L. A Two-Step Strategy that Combines Epigenetic Modification and Biomechanical Cues to Generate Mammalian Pluripotent Cells. J. Vis. Exp. (162), e61655, doi:10.3791/61655 (2020).

View Video