Summary

使用患者专用的 3D 打印肺模型评估区域肺沉积

Published: November 11, 2020
doi:

Summary

我们采用CT扫描衍生的3D打印肺模型和可调谐气流剖面,提出一种高通量体外方法,用于在叶位水平上量化区域肺沉积。

Abstract

肺病靶向疗法的发展受到可预测区域气溶胶输送能力的药物前检测方法的制约。利用 3D 打印生成患者专用肺模型,我们概述了用于量化球状肺沉积的高通量体外实验设置的设计。该系统由市售和 3D 打印组件组合而成,可独立控制肺部每个叶的流速。用荧光显微镜测量荧光气溶胶对每个叶的输送。该协议具有促进呼吸系统疾病个性化药物增长的潜力,因为它能够模拟广泛的患者人口统计学和疾病状态。3D 打印肺模型的几何形状和气流轮廓设置都可以轻松调整,以反映不同年龄、种族和性别患者的临床数据。临床相关的药物输送设备,如此处显示的内分泌管,可以纳入测试设置,以更准确地预测设备将治疗交付目标定向到肺部疾病区域的能力。这种实验设置的多功能性使其能够定制,以反映多种吸入条件,从而提高前结节治疗测试的严格性。

Introduction

肺癌、慢性阻塞性肺病等许多肺病在疾病特征上表现出区域差异:然而,缺乏治疗技术,以目标药物交付到只有肺1的病区。多个计算流体动态(CFD)模型已经证明,通过识别肺部2,3的特定流线,可以调节药物沉积图谱。我们的实验室正在开发具有区域定位能力的吸入器和内脏(ET)管适配器,以控制气溶胶向患病肺部区域的分布。这些原则推广到临床使用受当前临床前测试能力的限制。众所周知,药物沉积在肺部的确切位置是疗效的最佳预测器:然而,目前的药物评估的可吸入治疗最常预测使用体外体内的粒子大小相关性,只是近似沉积4。此技术不允许任何空间分析来确定不同气道几何形状对通过肺部不同叶的区域分布的影响。此外,这项测试缺乏解剖学上准确的肺几何学,研究人员已经表明,这可能对沉积图5产生重大影响。已作出一些努力,通过增加上呼吸道,将患者特异性肺几何学纳入测试方案:然而,这些方法大多样本气溶胶输送到不同代的肺,而不是每个肺叶6,7,8。下列协议提出了一种高通量的方法,以产生患者特定的肺模型,并能够量化肺9的五个叶中的每个叶的相对粒子沉积。

解剖学上准确的模型肺是由3D打印患者计算断层扫描(CT)扫描产生的。当与一个容易组装的流动系统一起使用时,可以通过每个模型肺叶的相对流率进行独立控制和定制,以模拟不同患者人口统计学和/或疾病状态的相对流率。通过这种方法,研究人员可以在相关的肺几何学中测试潜在治疗方法的有效性,并将每种方法的性能与疾病形态的进展联系起来。在这里,我们实验室开发的两种设备设计通过控制口腔或气管中气溶胶释放的位置来增强所需肺叶沉积的能力。该协议还有可能通过促进对患者CT扫描数据特定于模型肺的治疗效果的快速预测,显著影响患者个性化程序的发展。

Protocol

1. 准备3D打印实验组件 注:协议中使用的所有软件均在 材料表中注明。此外,所使用的切片软件是特定于 材料表中列出的 3D 打印机:但是,此协议可以扩展到各种立体石刻 (SLA) 3D 打印机。 将患者 CT 扫描转换为 3D 对象 (.stl 文件)。注:要更详细地讨论这些研究中使用的特定肺模型的几何特征,请参阅冯等人5。 <…

Representative Results

此大小范围(1-5 μm)和流速条件(1-10 L/min)的粒子根据其理论斯托克斯数和体内数据遵循流体流线;因此,在没有定向输送装置的情况下,释放到肺模型中的颗粒会根据流向每个叶的总气流百分比沉积。然后,通过分析患者特异性高分辨率计算机断层扫描 (HRCT) 扫描(HRCT)扫描获得的临床叶流率数据,可以比较每个叶的相对粒子输送量。经验证的实验设置将产生非靶向粒子沉…

Discussion

目前用于完全吸入剂量肺药测试的先进设备是下一个发电机冲击器 (NGI),用于测量气溶胶4的空气动力学直径。然后,这个大小的数据用于预测肺生成,气溶胶将沉积基于为健康的成年男性11开发的相关性。不幸的是,这种方法在评估区域肺沉积差异、确定疾病条件对药物输送的影响以及预测不同年龄组、种族和性别12、13、14</sup…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢于峰教授、詹娜·布里德尔博士、伊恩·伍德沃德博士和卢卡斯·阿提亚教授的有益讨论。

Materials

1/4" Plastic Barbed Tube Fitting McMaster Carr 5372K111
10 um Filter Paper Fisher 1093-110
1um Fluorescent Polystyrene Particles Polysciences 15702-10
1um Non-Fluorescent Polystyrene Particles Polysciences 8226
2-Propanol Fisher A516-4 Referred to in protocol as "IPA"
3/8" Plastic Barbed Tube Fitting McMaster Carr 5372K117
Air Flow Meter (1 – 280 mL/min) McMaster Carr 41695K32 Referred to in protocol as "flow meter"
Carbon M1 3D Printer Carbon 3D https://www.carbon3d.com/, Associated software referred to in protocol as "slicing software"
Collison Jet Nebulizer CH Technologies ARGCNB0008 (CN-25) 6 Jet MRE style horizontal collision with glass jar, Referred to in protocol as "nebulizer", http://chtechusa.com/Manuals/MRE_Collison_Manual.pdf
Convection Oven Yamato DKN602
Copley Critical Flow Controller TPK2000 Reve 120V MSP Corp 0001-01-9810 Referred to in protocol as "flow controller"
Copley High Capacity Pump Model HCP5 MSP Corp 0001-01-9982 Referred to in protocol as "vacuum pump"
Cytation BioTek CYT5MPV Multifunctional Spectrophotometer/Fluorescent imager equiped with 4x/20x/40x objectives and DAPI/GFP/TexasRed laser/filter cubes
EPU40 Resin Carbon 3D https://www.carbon3d.com/materials/epu-elastomeric-polyurethane/, Referred to in protocol as "soft resin"
Filter for vacuum pump Whatman 6722-5000
Flow Meter Model DFM 2000 MSP Corp 0001-01-8764 Referred to in protocol as "electronic flow meter"
ImageJ Software ImageJ https://imagej.nih.gov/ij/download.html
Inline Air Flow Control Valve (Push-to-Connect) McMaster Carr 62005K333 Referred to in protocol as "valve"
Inline Filter Devices Whatman WHA67225000
Marine-Grade Plywood Sheet McMaster Carr 62005K333 Referred to in protocol as "wooden board"
Materialise Mimics Software Materialise https://www.materialise.com/en/medical/mimics-innovation-suite, Referred to in protocol as "CT scan software"
Meshmixer Software Autodesk http://www.meshmixer.com/, Referred to in protocol as "mesh editing software"
Methanol Fisher A454-4
Opticure LED Cube APM Technica 102843 Referred to in protocol as "UV oven"
PR25 Resin Carbon 3D https://www.carbon3d.com/materials/uma-urethanemethacrylate, /Referred to in protocol as "hard resin"
PVC Tube for Chemicals McMaster Carr 5231K161 1/4" ID
Screws
SolidWorks Software Dassault Systèmes SolidWorks Corporation https://www.solidworks.com/, Referred to in protocol as "3D modeling software"
Straight Flow Rectangular Manifold McMaster Carr 1125T31
Tubing to Flow Controller McMaster Carr 5233K65 3/8" ID
Wire

Riferimenti

  1. Goel, A., Baboota, S., Sahni, J. K., Ali, J. Exploring targeted pulmonary delivery for treatment of lung cancer. International Journal of Pharmaceutical Investigation. 3 (1), 8-14 (2013).
  2. Kleinstreuer, C., Zhang, Z., Li, Z., Roberts, W. L., Rojas, C. A new methodology for targeting drug-aerosols in the human respiratory system. International Journal of Heat and Mass Transfer. 51 (23), 5578-5589 (2008).
  3. Feng, Y., Chen, X., Yang, M. An In Silico Investigation of a Lobe-Specific Targeted Pulmonary Drug Delivery Method. Design of Medical Devices Conference. , (2018).
  4. Marple, V. A., et al. Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I: Design. Journal of Aerosol Medicine. 16 (3), 283-299 (2003).
  5. Feng, Y., Zhao, J., Chen, X., Lin, J. An In Silico Subject-Variability Study of Upper Airway Morphological Influence on the Airflow Regime in a Tracheobronchial Tree. Bioingegneria. 4 (4), 90 (2017).
  6. Huynh, B. K., et al. The Development and Validation of an In Vitro Airway Model to Assess Realistic Airway Deposition and Drug Permeation Behavior of Orally Inhaled Products Across Synthetic Membranes. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 31 (2), 103-108 (2018).
  7. Lizal, F., Elcner, J., Hopke, P. K., Jedelsky, J., Jicha, M. Development of a realistic human airway model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 226 (3), 197-207 (2011).
  8. Wei, X., Hindle, M., Delvadia, R. R., Byron, P. R. In Vitro Tests for Aerosol Deposition. V: Using Realistic Testing to Estimate Variations in Aerosol Properties at the Trachea. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 30 (5), 339-348 (2017).
  9. Kolewe, E. L., Feng, Y., Fromen, C. A. Realizing Lobe-Specific Aerosol Targeting in a 3D-Printed In Vitro Lung Model. Journal of Aerosol Medicine and Pulmonary Drug Delivery. , (2020).
  10. Sul, B., et al. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro. Journal of Biomechanical Engineering. 140 (5), (2018).
  11. Martonen, T. B., Katz, I. Deposition Patterns of Polydisperse Aerosols Within Human Lungs. Journal of Aerosol Medicine. 6 (4), 251-274 (1993).
  12. Nahar, K., et al. In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. European Journal of Pharmaceutical Sciences. 49 (5), 805-818 (2013).
  13. Nichols, S. C., et al. A Multi-laboratory in Vitro Study to Compare Data from Abbreviated and Pharmacopeial Impactor Measurements for Orally Inhaled Products: a Report of the European Aerosol Group (EPAG). AAPS PharmSciTech. 17 (6), 1383-1392 (2016).
  14. Yoshida, H., Kuwana, A., Shibata, H., Izutsu, K. I., Goda, Y. Comparison of Aerodynamic Particle Size Distribution Between a Next Generation Impactor and a Cascade Impactor at a Range of Flow Rates. AAPS PharmSciTech. 18 (3), 646-653 (2017).
  15. Feng, Y., et al. An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition. Journal of Aerosol Science. 123, 185-207 (2018).
  16. Kleinstreuer, C., Seelecke, S. Inhaler system for targeted maximum drug-aerosol delivery. United States patent. , (2005).
  17. . How Medical 3D Printing is Gaining Ground in Top Hospitals Available from: https://www.materialise.com/en/blog/3d-printing-hospitals (2019)
  18. Weber, P. W., Price, O. T., McClellan, G. E. Demographic Variability of Inhalation Mechanics: A Review. Defense Threat Reduction Agency. , (2016).
  19. Jiang, Y. Y., Xu, X., Su, H. L., Liu, D. X. Gender-related difference in the upper airway dimensions and hyoid bone position in Chinese Han children and adolescents aged 6-18 years using cone beam computed tomography. Acta Odontologica Scandinavica. 73 (5), 391-400 (2015).
  20. Martin, S. E., Mathur, R., Marshall, I., Douglas, N. J. The effect of age, sex, obesity and posture on upper airway size. European Respiratory Journal. 10 (9), 2087 (1997).
  21. Xi, J., Longest, P. W., Martonen, T. B. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. Journal of Applied Physiology. 104 (6), 1761-1777 (2008).
  22. Zhao, J., Feng, Y., Fromen, C. A. Glottis motion effects on the particle transport and deposition in a subject-specific mouth-to-trachea model: A CFPD study. Computers in Biology and Medicine. 116, 103532 (2020).
  23. Kim, S. S., et al. Chronic obstructive pulmonary disease: lobe-based visual assessment of volumetric CT by Using standard images–comparison with quantitative CT and pulmonary function test in the COPDGene study. Radiology. 266 (2), 626-635 (2013).
  24. . The Cancer Imaging Archive Available from: https://www.cancerimagingarchive.net/ (2020)
  25. Li, A., Ahmadi, G. Computer Simulation of Deposition of Aerosols in a Turbulent Channel Flow with Rough Walls. Aerosol Science and Technology. 18 (1), 11-24 (1993).
  26. Khalili, S. F., Ghanbarzadeh, S., Nokhodchi, A., Hamishehkar, H. The effect of different coating materials on the prevention of powder bounce in the next generation impactor. Research in Pharmaceutical Sciences. 13 (3), 283-287 (2018).
  27. Galliger, Z., Vogt, C. D., Panoskaltsis-Mortari, A. 3D bioprinting for lungs and hollow organs. Translational Research. 211, 19-34 (2019).
  28. Schwarz, K., Biller, H., Windt, H., Koch, W., Hohlfeld, J. M. Characterization of exhaled particles from the healthy human lung–a systematic analysis in relation to pulmonary function variables. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 23 (6), 371-379 (2010).
  29. Patton, J. S., Byron, P. R. Inhaling medicines: delivering drugs to the body through the lungs. Nature Reviews Drug Discovery. 6 (1), 67-74 (2007).
  30. Zhang, Z., Kleinstreuer, C., Kim, C. S. Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. Journal of Aerosol Science. 33 (2), 257-281 (2002).
  31. Ju, Y., et al. Engineering of Nebulized Metal-Phenolic Capsules for Controlled Pulmonary Deposition. Advanced Science. 7 (6), 1902650 (2020).
check_url/it/61706?article_type=t

Play Video

Citazione di questo articolo
Peterman, E. L., Kolewe, E. L., Fromen, C. A. Evaluating Regional Pulmonary Deposition using Patient-Specific 3D Printed Lung Models. J. Vis. Exp. (165), e61706, doi:10.3791/61706 (2020).

View Video