Summary

一种新型吸入面膜系统,可在自发呼吸受试者中提供高浓度的一氧化氮气体

Published: May 04, 2021
doi:

Summary

这种简单且适应性强的系统设备用于吸入高浓度一氧化氮 (NO) 气体,不需要机械呼吸机、正压或高气体流动。标准医疗耗材和贴合面膜用于安全地向自发呼吸的受试者输送无气体。

Abstract

一氧化氮(NO)被作为吸入气体管理,以诱导选择性肺血管化。这是一种安全的治疗方法,即使高浓度地进行治疗,也几乎没有潜在的风险。吸入的无气体通常用于在不同的疾病条件下增加全身氧合。高浓度NO的管理在体外也起到恶毒的作用。由于其有利的药理动力学和安全配置文件,关键护理提供者熟悉其使用情况,以及潜在的直接病毒效应,NO临床上用于冠状病毒性疾病-2019(COVID-19)患者。然而,目前没有设备能够轻松地在各种受启发的氧气分数中浓度超过百万分之 80(ppm)的浓度下轻松管理吸入的 NO,而不需要专用、重型和昂贵的设备。开发可靠、安全、廉价、轻便和无呼吸机的解决方案至关重要,特别是对于在重症监护室 (ICU) 之外和资源有限的情况下对非受管患者进行早期治疗至关重要。为了克服这一障碍,利用标准耗材和清扫室开发了一个非侵入性无气管理系统,最高可达 250 ppm。该方法已被证明在降低二氧化氮含量的同时,在提供指定的无浓度方面是安全可靠的。本文旨在为临床医生和研究人员提供必要的信息,说明如何组装或调整该系统,用于研究目的或在COVID-19或其他疾病中临床使用,而无管理可能有益。

Introduction

在几个临床环境中没有吸入疗法经常被用作救命疗法。。。除了其众所周知的肺吸附剂效应4外,NO还对细菌5、病毒6和真菌7表现出广泛的抗菌作用,特别是在高浓度(>100ppm)下施用。8在二零零三年严重急性呼吸系统综合症(SARS)爆发期间,NO在体外显示有效的抗病毒活性,并显示感染SARS-科罗纳病毒(SARS-CoV)9、10的病人有疗效。2003年病毒株在结构上与SARS-Cov-2相似,SARS-Cov-2是导致目前冠状病毒性疾病-2019(COVID-19)大流行11的病原体。在COVID-19患者中,正在进行三项随机对照临床试验,以确定呼吸高浓度无气体的潜在益处,以改善结果12、13、14。在第四项正在进行的研究中,正在研究高浓度NO的预防吸入,作为预防接触SARS-CoV-2阳性患者的卫生保健提供者COVID-19发展的预防措施。

为COVID-19开发有效和安全的治疗是医疗保健和科学界的优先事项。为了调查非受管患者和志愿医护人员的剂量>80ppm的无毒气体的施用情况,开发一个安全可靠的非侵入性系统的必要性变得显而易见。这项技术旨在对自发呼吸的受试者管理不同成分的受启发氧(FiO2)的高无浓度。这里描述的方法目前用于研究目的,在马萨诸塞州总医院(MGH)16,17自发呼吸COVID-19患者。根据MGH人类研究伦理委员会的指导方针,目前建议的系统用于进行一系列随机对照试验,以研究高浓度无气体的以下影响。首先,在轻度COVID-19的非受管受试者中,正在研究160ppm无气体的影响,该受试者要么在急诊部(IRB协议#2020P001036)14中被录取,要么作为住院病人(IRB协议#2020P000786)18。第二,正在审查高剂量NO的作用,以防止SARS-CoV-2感染和COVID-19症状的发展,在卫生保健提供者经常暴露在SARS-CoV-2阳性患者(IRB协议#2020P000831)19。

这种简单的设备可以组装与标准耗材,通常用于呼吸治疗。拟议的仪器旨在非侵入性地提供无气体、医用空气和氧气(O2)的混合物。将二氧化氮(NO2)吸入降至最低,以降低气道毒性的风险。美国政府工业卫生会议设定的当前 NO2 安全阈值比 8 小时时间加权平均值高 3 ppm,5 ppm 是短期暴露限制。相反,国家职业安全与健康研究所建议将1ppm作为短期接触限制20。鉴于人们对高剂量无毒气体疗法的兴趣日益浓厚,本报告对这种新设备作了必要的描述。它解释了如何组装其组件,以提供高浓度的 NO 用于研究目的。

Protocol

注:请参阅组装交付系统所需的材料材料表。医疗空气、O2和无气体的来源也应在现场提供。该装置已开发用于研究协议中的调查,并经过当地机构审查委员会(IRB)的严格审查。在任何情况下,提供商都不应仅根据本手稿中包含的指示进行运营,在未事先获得适当机构监管批准的情况下组装和使用此设备。从设备的近端开始,按以下顺序组装件件(图1)。</s…

Representative Results

一名33岁的呼吸治疗师在MGHICU工作期间,ICU的COVID-19的入院人数激增,自愿接受NO,作为涉及15,19名医护人员的试验的一部分。试验测试了160ppm的NO作为毒剂的疗效,从而防止了肺部疾病的发生,从而面临病毒污染的风险。吸入预防的第一个会话在开始通过描述的设备换班 15 分钟之前进行了管理。出于研究目的,连续测量吸入的N…

Discussion

鉴于对无管注射患者(包括COVID-198患者)的无气体治疗的兴趣日益浓厚,本报告描述了一种新型的定制设备,以及如何组装其组件,以高达250ppm的浓度提供NO。拟议的系统由廉价的消耗品构建,并安全地在自发呼吸的患者中提供可重复浓度的无气体。组装和使用的便利性,加上其他地方公布的安全数据16,17,使该系统的理想体现,以管理高无气体浓度在不同的F…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究得到了哈佛医学院雷金纳德·詹尼捐赠主席对L.B的支持,得到了L.B医学部的杂物基金的支持,以及MGH麻醉、重症监护和疼痛医学部麻醉中心重症监护研究中心的实验室基金的支持。

Materials

90° ventilator elbow connector without ports 22 mm ID x 22 mm OD Teleflex, Wayne, PA, USA 1641
Aerosol tee connector: horizontal ports 22 mm OD, vertical port 11 mm ID/22 mm OD Teleflex, Wayne, PA, USA 1077
Flexible patient connector for endotracheal or tracheostomy tube (15 mm OD x 22 mm OD/15 mm ID, length 5 cm to 6.5 cm) Vyaire Medical Inc., Mettawa, IL, USA 3215
High-efficiency particulate air (highly hydrophobic bacterial/viral filter,  HEPA class 13) filter (22 mm ID/15 mm OD x 22 mm OD/15 mm ID connector) Teleflex, Wayne, PA, USA 28012
Latex-free 3-L breathing reservoir bag CareFusion, Yorba Linda, CA, USA 5063NL
Nitric Oxide tank 800 ppm medical-grade (size AQ aluminum cylinders containing 2239 L at STP of 800 ppm NO gas balanced with nitrogen, volume 2197 L) Praxair, Bethlehem PA, USA MM NO800NI-AQ
One-way valve 22 mm male/female (arrow pointing towards female end) Teleflex, Wayne, PA, USA 1664 N=2 inspiratory limb (upward arrow)
One-way valve 22 mm male/female (arrow pointing towards male end) Teleflex, Wayne, PA, USA 1665 N=1 expiratory limb (downward arrow)
Rad-57 Handheld Pulse Oximeter with Rainbow SET Technology Masimo Corporation, Irvine, CA, USA 3736 Including SpMet Option
Scavenger (ID = 60 mm, internal length = 53 mm, volume = 150 mL) containing 100 g of calcium hydroxide Spherasorb, Intersurgical Ltd, Berkshire, UK
Silicon rubber flexible connectors 22 mm F x 22 mm F Tri-anim Health Services, Dublin, OH, USA 301-9000
Snug-fit standard face mask of appropriate size
Star Lumen standard medical grade vynil oxygen tubing with universal connectors Teleflex, Morrisville, NC, USA 1115 Variable length according to distance from source of gas. 2.1 m length used in protocol
Straight connector with a 7.6 mm sampling port (15 mm OD x 15 mm ID/22 mm OD) Mallinckrodt, Bedminster, NJ, USA 502041
Two-step adapter (15 mm to 22 mm) Airlife Auburndale, FL, USA 1824
Y-piece connector with 7.6 mm ports (22 mm to 22 mm and 15 F) Vyaire Medical Inc., Mettawa, IL, USA 1831

Riferimenti

  1. Roberts, I. D., Fineman, J. F., Zapol, W. M. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. Pneumologie. 52 (4), 239 (1998).
  2. Rossaint, R., et al. Inhaled nitric oxide for the adult respiratory distress syndrome. New England Journal of Medicine. 328 (6), 399-405 (1993).
  3. Robinson, J. N., Banerjee, R., Landzberg, M. J., Thiet, M. P. Inhaled nitric oxide therapy in pregnancy complicated by pulmonary hypertension. American Journal of Obstetrics and Gynecology. 180 (4), 1045-1046 (1999).
  4. Ichinose, F., Roberts, J. D., Zapol, W. M. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 109 (25), 3106-3111 (2004).
  5. Miller, C. C., et al. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia. Journal of Cystic Fibrosis. 12 (6), 817-820 (2013).
  6. Åkerström, S., Gunalan, V., Keng, C. T., Tan, Y. J., Mirazimi, A. Dual effect of nitric oxide on SARS-CoV replication: Viral RNA production and palmitoylation of the S protein are affected. Virology. 395 (1), 1-9 (2009).
  7. Deppisch, C., et al. Gaseous nitric oxide to treat antibiotic resistant bacterial and fungal lung infections in patients with cystic fibrosis: a phase I clinical study. Infection. 44 (4), 513-520 (2016).
  8. Alvarez, R. A., Berra, L., Gladwin, M. T. Home nitric oxide therapy for COVID-19. American Journal of Respiratory and Critical Care Medicine. 202 (1), 16-20 (2020).
  9. Chen, L., et al. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: A rescue trial in Beijing. Clinical Infectious Diseases. 39 (10), 1531-1535 (2004).
  10. Keyaerts, E., et al. Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N- acetylpenicillamine, a nitric oxide donor compound. International Journal of Infectious Diseases. 8 (4), 223-226 (2004).
  11. Rossi, G. A., Sacco, O., Mancino, E., Cristiani, L., Midulla, F. Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Infection. 48 (5), 665-669 (2020).
  12. Berra, L., et al. Protocol for a randomized controlled trial testing inhaled nitric oxide therapy in spontaneously breathing patients with COVID-19. medRxiv. , (2020).
  13. Lei, C., et al. Protocol for a randomized controlled trial testing inhaled nitric oxide therapy in spontaneously breathing patients with COVID-19. medRxiv. , (2020).
  14. . Nitric oxide inhalation therapy for COVID-19 infections in the ED Available from: https://clinicaltrials.gov/ct2/show/NCT04338828 (2020)
  15. Gianni, S., et al. Nitric oxide gas inhalation to prevent COVID-2019 in healthcare providers. medRxiv. , (2020).
  16. Safaee Fakhr, B., et al. High concentrations of nitric oxide inhalation therapy in pregnant patients with severe coronavirus disease 2019 (COVID-19). Obstetrics & Gynecology. , (2020).
  17. Gianni, S., et al. Ideation and assessment of a nitric oxide delivery system for spontaneously breathing subjects. Nitric Oxide. 104-105, 29-35 (2020).
  18. . Nitric oxide gas inhalation therapy for mild/moderate COVID-19 Available from: https://clinicaltrials.gov/ct2/show/NCT04305457 (2020)
  19. . NO prevention of COVID-19 for healthcare providers Available from: https://clinicaltrials.gov/ct2/show/NCT04312243?term=Berra&draw=2&rank=7 (2020)
  20. . 1988 OSHA PEL Project-Nitrogen Dioxide|NIOSH|CDC Available from: https://www.cdc.gov/niosh/pel88/10102-44.html (2020)
  21. Yu, B., Zapol, W. M., Berra, L. Electrically generated nitric oxide from air: a safe and economical treatment for pulmonary hypertension. Intensive Care Medicine. 45 (11), 1612-1614 (2019).
  22. Yu, B., Muenster, S., Blaesi, A. H., Bloch, D. B., Zapol, W. M. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy. Science Translational Medicine. 7 (294), (2015).
  23. Lovich, M. A., et al. Generation of purified nitric oxide from liquid N2O4 for the treatment of pulmonary hypertension in hypoxemic swine. Nitric Oxide – Biology and Chemistry. 37 (1), 66-72 (2014).
  24. Cortazzo, J. A., Lichtman, A. D. Methemoglobinemia: A review and recommendations for management. Journal of Cardiothoracic and Vascular Anesthesia. 28 (4), 1043-1047 (2014).
  25. Christenson, J., et al. The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. American Journal of Respiratory and Critical Care Medicine. 161 (5), 1443-1449 (2000).
  26. Yu, B., Ichinose, F., Bloch, D. B., Zapol, W. M. Inhaled nitric oxide. British Journal of Pharmacology. 176 (2), 246-255 (2019).
  27. INO Therapeutics. INOMAX – nitric oxide gas. Food and Drug Administration (FDA) Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020845s014lbl.pdf (2013)
  28. Klinger, J. R., et al. Therapy for pulmonary arterial hypertension in adults: Update of the CHEST Guideline and Expert Panel Report. Chest. 155 (3), 565-586 (2019).
  29. Cornfield, D. N., Milla, C. E., Haddad, I. Y., Barbato, J. E., Park, S. J. Safety of inhaled nitric oxide after lung transplantation. Journal of Heart and Lung Transplantation. 22 (8), 903-907 (2003).
  30. Bhorade, S., et al. Response to inhaled nitric oxide in patients with acute right heart syndrome. American Journal of Respiratory and Critical Care Medicine. 159 (2), 571-579 (1999).
  31. Mizutani, T., Layon, A. J. Clinical applications of nitric oxide. Chest. 110 (2), 506-524 (1996).
  32. . Nitric oxide gas inhalation in Severe Acute Respiratory Syndrome in COVID-19 Available from: https://clinicaltrials.gov/ct2/show/NCT04306393 (2020)
check_url/it/61769?article_type=t

Play Video

Citazione di questo articolo
Pinciroli, R., Traeger, L., Fischbach, A., Gianni, S., Morais, C. C. A., Fakhr, B. S., Di Fenza, R., Robinson, D., Carroll, R., Zapol, W. M., Berra, L. A Novel Inhalation Mask System to Deliver High Concentrations of Nitric Oxide Gas in Spontaneously Breathing Subjects. J. Vis. Exp. (171), e61769, doi:10.3791/61769 (2021).

View Video