Summary

研究结肠癌干细胞的球体三维模型

Published: January 22, 2021
doi:

Summary

该协议提出了一个新型的,强大的,可重复的文化系统,以产生和生长三维球体从Caco2结肠腺癌细胞。研究结果为研究癌症干细胞生物学(包括化疗反应)的方法的恰当性提供了第一个概念证明。

Abstract

结肠直肠癌的特点是异质性和分层组织,由负责肿瘤开发、维持和抗药性的癌症干细胞(CSC)群体组成。因此,更好地了解CSC特性对于其特定目标来说是有效治疗的先决条件。然而,缺乏适合深入调查的可适用的前科模型。虽然体外二维(2D)癌细胞系为肿瘤生物学提供了有价值的见解,但它们不会复制表型和遗传肿瘤异质性。相比之下,三维(3D)模型处理和再现近生理癌症的复杂性和细胞异质性。这项工作的目的是设计一个强大和可重复的3D培养系统来研究CSC生物学。目前的方法描述了从Caco2结肠腺癌细胞中产生3D球体的条件的发展和优化,这种模型可用于长期培养。重要的是,在球体中,围绕流明状结构组织的细胞的特点是微分细胞增殖模式,以及CSC的存在,这些细胞表示一组标记物。这些结果为研究细胞异质性和CSC生物学(包括对化疗的反应)的这种3D方法的恰当性提供了第一个概念证明。

Introduction

结肠直肠癌(CRC)仍然是世界第二大癌症相关死亡原因CRC的发展是基因突变和/或表观遗传改变2,3逐步获取和积累的结果,包括肿瘤基因的激活和肿瘤抑制基因3,4的灭活。此外,非遗传因素(如微环境)可以促进和促进原基因转化,从而参与CRC5的演变。重要的是,CRC由不同的细胞群组成,包括未分化的CSC和显示一些分化特征的散装肿瘤细胞,它们构成了一个层次结构,让人联想到正常结肠密码6、7中的上皮组织。

CSC被认为是负责肿瘤外观8,其维持和生长,转移能力,和耐常规疗法6,7。在肿瘤中,癌细胞,包括CSC,在它们独特的突变和表观遗传特征、形态和表型差异、基因表达、新陈代谢、增殖率和转移潜力方面表现出高度的异质性和复杂性因此,为了更好地了解癌症生物学,肿瘤进展,并获得抗药性治疗及其转化为有效的治疗,人类前科模型捕捉这种癌症的异质性和层次性是重要的10,11。

体外2D癌细胞系已被长期使用,为肿瘤的发展和治疗分子疗效的机制提供了宝贵的见解。然而,由于原始肿瘤中缺乏表型和遗传异质性,它们的限制现在已得到广泛认可。此外,营养物质、氧气、pH梯度和肿瘤微环境不复发生,微环境对于维持包括CSC11、12在内的不同细胞类型的特别重要。为了克服这些主要缺点,已经开发了几种3D模型,以实验性地解决和再现癌症的复杂性和异质性。实际上,这些模型可回顾肿瘤细胞异质性、细胞相互作用和空间结构,类似于体内12、13、14中观察到的模型。从新鲜肿瘤以及细胞线衍生球体中建立的原发性肿瘤器官主要采用15、16。

球体可以以无脚手架或脚手架的方式培养,以迫使细胞形成细胞并在细胞聚合体中生长。无脚手架的方法基于非粘附条件下的细胞培养(例如,悬垂法或超低附着板),而基于脚手架的模型则依赖于自然、合成或混合生物材料来培养细胞12、13、14。基于脚手架的球体呈现不同的缺点,因为最终的球体形成将取决于所用(生物)材料的性质和组成。虽然脚手架无球体方法,到目前为止不依赖于基板的性质,他们产生球体,在结构和大小17,18变化。

这项工作旨在设计一个强大和可重复的球体3D培养系统,其大小是同质的,由Caco2结肠腺癌细胞组成,以研究CSC生物学。Caco2细胞特别感兴趣,因为它们能够随着时间的推移分化19,20,强烈地暗示了干细胞般的潜力。因此,球体的长期培养揭示了不同CSC人群对化疗有不同的反应。

Protocol

注:所有试剂和材料的详细信息都列在 材料表中。 1. 球形形成 球形文化媒体 准备基础介质,包括杜尔贝科的改良鹰介质 (DMEM), 辅以 4 mM L-阿拉尼尔- L – 谷氨酰二肽. 从步骤 1.1.1 开始,在基础介质中准备包含 10% 胎儿牛血清 (FBS) 和 1% 青霉素链霉素 (笔/链球菌) 的 DMEM 完整介质。 从步骤 1.1.1 开始,在基础介质中准备包含 2.5%…

Representative Results

由于球体大小缺乏同质性是目前可用的3D球形培养系统13的主要缺点之一,这项工作的目的是建立一个可靠和可重复的协议,以获得同质球体。首先,为了建立理想的工作条件,使用专用板(表1)测试了不同数量的Caco2细胞,每个微孔/球体的细胞从50到2000个不等。实际上,这些板块中的每口井都含有1,200个微孔,使每口井形成相同数量的球?…

Discussion

体外3D模型克服了2D癌细胞培养的主要实验缺陷,因为它们在回顾典型的肿瘤特征(包括微环境和细胞异质性)方面似乎更可靠。常用的球体 3D 模型是无脚手架(在低附件条件下培养)或基于脚手架(使用生物材料培养细胞)。这些方法由于取决于使用的脚手架的性质或产生结构和大小变化的球体而呈现不同的缺点。

本协议报告了使用无脚手架方法从结肠腺癌细胞系 Caco2 中?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们确认成像和阿尼帕德重新切切组织学平台 (CRCL, CLB).我们感谢里昂·贝拉德中心(CLB)医院的药房,感谢福尔福克斯和福尔菲里赠送的实物礼物。我们还感谢布里吉特·曼希普对手稿的批判性阅读。这项工作得到了FRM(2018年FRM,DEQ20181039598)和印加(PLBIO19-289)的支持。MVG 和 LC 得到了 FRM 的支持,CF 得到了 ARC 基金会和莱昂·贝拉德中心的支持。

Materials

37 µm Reversible Strainer, Large  STEMCELL Technologies 27250 To be used with 50 mL conical tubes
5-Fluorouracil Gift from Pharmacy of the Centre Leon Berard (CLB) stock solution, 5 mg/100 mL; final concentration, 50 µg/mL
Agarose  Sigma A9539
Aggrewell 400 24-well plates STEMCELL Technologies 34411 1,200 microwells per well for spheroid formation and growth
Anti Caspase3 – Rabbit Cell Signaling 9661 dilution 1:200
Anti Musashi-1 (14H1) – Rat eBioscience/Thermo Fisher 14-9896-82 dilution 1:500
Anti-Adherence Rinsing Solution x 100 mL STEMCELL Technologies 07010
Anti-CD133 (13A4) – Rat Invitrogen 14-133-82 dilution 1:100
Anti-CD44 -Rabbit Abcam ab157107 dilution 1:2000
Anti-PCNA – Mouse Dako M0879 dilution 1:1000
Anti-β-catenin – Mouse Santa Cruz Biotechnology sc-7963 dilution 1:50
Black multiwell plates Thermo Fisher Scientific 237108
Citric Acid Monohydrate Sigma C1909
CLARIOstar apparatus  BMG Labtech microplate reader
Dako pen marker pen to mark circles on slides for creating barriers for liquids
Donkey anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488 Thermo Fisher Scientific A21202 dilution 1:1000
Donkey anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 568 Thermo Fisher Scientific A10037 dilution 1:1000
Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 Thermo Fisher Scientific A21206 dilution 1:1000
Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 568 Thermo Fisher Scientific A10042 dilution 1:1000
Dulbecco's Modified Eagle Medium (DMEM) Glutamax (L-alanyl-L-glutamine dipeptide) Gibco 10569010
Fetal Bovine Serum (FBS) Gibco 16000044
Fluorogel mounting medium with DAPI Interchim FP-DT094B
Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 568 Thermo Fisher Scientific A11077 dilution 1:1000
ImageJ software Spheroid image analysis
Irinotecan  Gift from Pharmacy CLB stock solution, 20 mg/mL; final concentration, 100 µg/mL
iScript reverse transcriptase  Bio-Rad 1708891
Leucovorin Gift from Pharmacy CLB stock solution, 50 mg/mL; final concentration, 25 µg/mL
Matrigel Basement Membrane Matrix Corning 354234 Basement membrane matrix
Nucleospin RNA XS Kit Macherey-Nagel 740902 .250
Oxaliplatin Gift from Pharmacy CLB stock solution, 100 mg/20 mL;final concentration, 10 µg/mL
Penicillin-streptomycin Gibco 15140130
Phosphate Buffer Saline (PBS) Gibco 14190250
SYBR qPCR Premix Ex Taq II (Tli RNaseH Plus) Takara RR420B
SYTOX- Green Thermo Fisher Scientific S7020 nucleic acid stain; dilution 1:5000
Trypsin-EDTA (0.05 %) Gibco 25300062
Zeiss-Axiovert microscope inverted microscope for acquiring images of spheroids

Riferimenti

  1. Bray, F., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 68 (6), 394-424 (2018).
  2. Fearon, E. R., Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell. 61 (5), 759-767 (1990).
  3. Rao, C. V., Yamada, H. Y. Genomic instability and colon carcinogenesis: from the perspective of genes. Frontiers in Oncology. 3, 130 (2013).
  4. Fearon, E. R. Molecular genetics of colorectal cancer. Annual Review of Pathology. 6 (1), 479-507 (2011).
  5. Tran, T. Q., et al. α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer. Nature Cancer. 1 (3), 345-358 (2020).
  6. Batlle, E., Clevers, H. Cancer stem cells revisited. Nature Medicine. 23 (10), 1124-1134 (2017).
  7. Clevers, H. The cancer stem cell: premises, promises and challenges. Nature Medicine. 17 (3), 313-319 (2011).
  8. Barker, N., et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 457 (7229), 608-611 (2009).
  9. Dutta, D., Heo, I., Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends in Molecular Medicine. 23 (5), 393-410 (2017).
  10. Bleijs, M., van de Wetering, M., Clevers, H., Drost, J. Xenograft and organoid model systems in cancer research. The EMBO Journal. 38 (15), 101654 (2019).
  11. Kawai, S., et al. Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Scientific Reports. 10 (1), 3156 (2020).
  12. Ferreira, L. P., Gaspar, V. M., Mano, J. F. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomaterialia. 75, 11-34 (2018).
  13. Friedrich, J., Seidel, C., Ebner, R., Kunz-Schughart, L. A. Spheroid-based drug screen: considerations and practical approach. Nature Protocols. 4 (3), 309-324 (2009).
  14. Chaicharoenaudomrung, N., Kunhorm, P., Noisa, P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World Journal of Stem Cells. 11 (12), 1065-1083 (2019).
  15. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  16. Weiswald, L. -. B., Bellet, D., Dangles-Marie, V. Spherical cancer models in tumor biology. Neoplasia. 17 (1), 1-15 (2015).
  17. Nath, S., Devi, G. R. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology & Therapeutics. 163, 94-108 (2016).
  18. Silva-Almeida, C., Ewart, M. -. A., Wilde, C. 3D gastrointestinal models and organoids to study metabolism in human colon cancer. Seminars in Cell & Developmental Biology. 98, 98-104 (2020).
  19. Chantret, I., Barbat, A., Dussaulx, E., Brattain, M. G., Zweibaum, A. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: A survey of twenty cell lines. Ricerca sul cancro. 48 (7), 1936-1942 (1988).
  20. Caro, I., et al. Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and biotransformation of drugs. International Journal of Pharmaceutics. 116 (2), 147-158 (1995).
  21. Antonchuk, J. Formation of embryoid bodies from human pluripotent stem cells using AggreWellTM plates. Methods in Molecular Biology. 946, 523-533 (2013).
  22. Wolpin, B. M., Mayer, R. J. Systemic treatment of colorectal cancer. Gastroenterology. 134 (5), 1296-1310 (2008).
  23. Yaffee, P., Osipov, A., Tan, C., Tuli, R., Hendifar, A. Review of systemic therapies for locally advanced and metastatic rectal cancer. Journal of Gastrointestinal Oncology. 6 (2), 185-200 (2015).
  24. Fujita, K., Kubota, Y., Ishida, H., Sasaki, Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World Journal of Gastroenterology. 21 (43), 12234-12248 (2015).
  25. Mohelnikova-Duchonova, B., Melichar, B., Soucek, P. FOLFOX/FOLFIRI pharmacogenetics: the call for a personalized approach in colorectal cancer therapy. World Journal of Gastroenterology. 20 (30), 10316-10330 (2014).
  26. Jordan, N. J., et al. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Research. 16 (1), 12 (2014).
  27. Mohr, J. C., et al. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials. 31 (7), 1885-1893 (2010).
  28. Hughes, C. S., Postovit, L. M., Lajoie, G. A. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics. 10 (9), 1886-1890 (2010).
  29. Luca, A. C., et al. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One. 8 (3), 59689 (2013).
  30. Petersen, O. W., Rønnov-Jessen, L., Howlett, A. R., Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America. 89 (19), 9064-9068 (1992).
  31. Nusse, R., Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 169 (6), 985-999 (2017).
  32. Sambuy, Y., De Angelis, I., Ranaldi, G., Scarino, M. L., Stammati, A., Zucco, F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biology and Toxicology. 21 (1), 1-26 (2005).
  33. Vermeulen, L., Snippert, H. J. Stem cell dynamics in homeostasis and cancer of the intestine. Nature Reviews Cancer. 14 (7), 468-480 (2014).
  34. van der Heijden, M., Vermeulen, L. Stem cells in homeostasis and cancer of the gut. Molecular Cancer. 18 (1), 66 (2019).
  35. Barker, N., Bartfeld, S., Clevers, H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell. 7 (6), 656-670 (2010).
  36. van der Flier, L. G., Haegebarth, A., Stange, D. E., van de Wetering, M., Clevers, H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 137 (1), 15-17 (2009).
  37. Potten, C. S., et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation. 71 (1), 28-41 (2003).
  38. Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell. 154 (2), 274-284 (2013).
  39. Clark, D. W., Palle, K. Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets. Annals of Translational Medicine. 4 (24), 518 (2016).
  40. Tomita, H., Tanaka, K., Tanaka, T., Hara, A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 7 (10), 11018-11032 (2016).
  41. Zoetemelk, M., Rausch, M., Colin, D. J., Dormond, O., Nowak-Sliwinska, P. Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Scientific Reports. 9 (1), 7103 (2019).
  42. Garcia-Mayea, Y., Mir, C., Masson, F., Paciucci, R., Leonart, M. E. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Seminars in Cancer Biology. 60, 166-180 (2020).
  43. Marusyk, A., Janiszewska, M., Polyak, K. Intratumor heterogeneity: The Rosetta Stone of therapy resistance. Cancer Cell. 37 (4), 471-484 (2020).

Play Video

Citazione di questo articolo
Giolito, M. V., Claret, L., Frau, C., Plateroti, M. A Three-dimensional Model of Spheroids to Study Colon Cancer Stem Cells. J. Vis. Exp. (167), e61783, doi:10.3791/61783 (2021).

View Video