Summary

与嗅觉恩希廷格利亚合体培养的 Axotom 化大鼠视网膜甘利翁神经元,作为成人轴再生体外模型

Published: November 02, 2020
doi:

Summary

我们提出了一个体外模型,以评估神经损伤后嗅觉包裹胶质(OEG)神经再生能力。它基于OEG单层的轴突成人视网膜结节神经元(RGN)的共生和随后的轴再生研究,通过分析RGN轴突和声乐内皮标记。

Abstract

嗅觉包裹胶质 (OEG) 细胞从嗅觉粘膜一直定位到嗅球的嗅觉神经层 (ONL)。在整个成年生活中,它们是新产生的嗅觉神经元的轴突生长的关键,从拉米纳预言家到ONL。由于其亲再生特性,这些细胞已被用于促进脊髓或视神经损伤模型的轴突再生。

我们提出了一个体外模型,以检测和测量神经损伤后OEG神经再生能力。在这个模型中,可逆不朽的人类OEG(ihOEG)被培养为单层,视网膜从成年大鼠中提取,视网膜结石神经元(RGN)被共同培养到OEG单层。96小时后,通过免疫荧光分析RGN中的轴突和索马托内皮标记,并量化带轴突的RN数量和平均轴突长度/神经元。

此协议比依赖胚胎或产后神经元的其他体外检测具有优势,它评估成人组织中的OEG神经再生特性。此外,它不仅可用于评估 ihOEG 的神经再生潜力,而且可以扩展到 OEG 或其他胶质细胞的不同来源。

Introduction

成人中枢神经系统(CNS)神经元在受伤或患病后再生能力有限。促进CNS再生的一个共同策略是移植,在损伤部位,诱导轴突生长的细胞类型,如干细胞,施万细胞,星形细胞或嗅觉包裹胶质(OEG)细胞1,2,3,4,5。

OEG源自神经峰6,位于嗅觉粘膜和嗅球中。在成人中,嗅觉神经元由于环境暴露而定期死亡,并被新分化的神经元所取代。OEG包围和引导这些新的嗅觉轴突进入嗅球,并建立新的突触,他们的目标在CNS7。由于这些生理属性,OEG已被用于CNS损伤的模型,如脊髓或视神经损伤,其神经再生和神经保护特性被证实为8,9,10,11。几个因素已被确定为负责这些细胞的亲再生特征,包括细胞外基质蛋白酶生产或分泌神经营养和轴突生长因子12,13,14。

鉴于扩大原OEG细胞的技术局限性,我们以前建立并定性了可逆不朽的人类OEG(ihOEG)克隆系,它提供了无限的均匀OEG供应。这些 ihOEG 细胞源自原始培养物,这些培养物来自验尸中获得的嗅觉球茎。它们通过端粒酶催化亚单(TERT)和上基因Bmi-1的转导而永生,并与SV40病毒大T抗原15、16、17、18一起改良。其中两个ihOEG细胞系是Ts14,它保持了原始培养物和Ts12的再生能力,Ts12是一种低再生线,在这些实验中用作低再生控制。

为了评估OEG在神经损伤后促进轴突再生的能力,已经实施了几个体外模型。在这些模型中,OEG应用于不同神经元起源和中性形成和拉长的培养物——对胶质文化的反应——被检测。这些神经元来源的例子有新生儿大鼠皮质神经元19,从皮质组织对大鼠胚胎神经元进行划伤20,大鼠视网膜外泄21,大鼠下丘脑或海马产后神经元22,23 ,产后大鼠鼻脊髓根结节神经元24个,产后小鼠皮质脊髓神经元25个,人类NT2神经元26个,或产后脑皮质神经元对反应性星形细胞疤痕样培养27个。

然而,在这些模型中,再生检测依赖于胚胎或产后神经元,这些神经元具有受伤的成人神经元所缺乏的内在可塑性。为了克服这个缺点, 我们提出了一个成人轴突再生模型在OEG线的培养与成人视网膜结节神经元(RN),基于一个最初由威格利等人28,29,30,31和修改和使用我们组12,13,14,15,16,17,18,32,33。简言之,视网膜组织从成年大鼠中提取,用木瓜消化。视网膜细胞悬浮液随后被镀在多晶硅处理的盖片上或 Ts14 和 Ts12 单层上。培养物在修复前保持96小时,然后进行轴突(MAP1B和NF-H蛋白)34和体血体(MAP2A和B)35标记的免疫荧光。轴突再生被量化为轴突神经元的百分比,关于RGN的总数,轴再生指数被计算为每个神经元的平均轴突长度。此协议不仅可用于评估 ihOEG 的神经再生潜力,而且可以扩展到 OEG 或其他胶质细胞的不同来源。

Protocol

注:动物实验已获国家和机构生物伦理委员会批准。 1. ihOEG (Ts12 和 Ts14) 文化 注:此程序是在组织培养生物安全柜的无菌条件下完成的。 准备 表 1中提供的 50 mL ME10 OEG 文化介质。 准备5毫升的DMEM/F12-FBS,如 表1所示,在15毫升圆锥管。 在37°C的清洁水浴中加热两种介质15分钟。 在干净的水浴中,在…

Representative Results

在此协议中,我们提出了一个体外模型,以检测神经元损伤后的OEG神经再生能力。如图1所示,OEG源是一个可逆的不朽的人类OEG克隆细胞系-Ts14和Ts12-,它源自原始文化,从验尸15,17,18获得的嗅球。视网膜组织从成年大鼠身上提取,消化后,视网膜结节神经元(RGN)悬浮物镀在PLL处理的盖片上或iHOEG单层?…

Discussion

OEG移植在CNS损伤部位被认为是一个有希望的治疗CNS损伤,因为它构成亲神经再生属性7,8,9。然而,根据组织来源-嗅觉粘膜(OM-OEG)与嗅球(OB-OEG)-或捐赠者的年龄,这种能力存在相当大的差异26,31,33,36。因此,在开始体内?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了SAF2017-82736-C2-1-R项目的财政支持,该项目由西恩西亚·埃因诺瓦西翁部长到MTM-F,由弗朗西斯科·德维托里亚基金会向JS提供。

Materials

antibody 514 Reference 34 Rabbit polyclonal antiserum, which recognizes MAP2A and B.
antibody SMI-31 BioLegend 801601 Monoclonal antibody against MAP1B and NF-H proteins
anti-mouse Alexa Fluor 488 antibody ThermoFisher A-21202
anti-rabbit Alexa Fluor 594 antibody ThermoFisher A-21207
B-27 Supplement Gibco 17504044
D,L-2-amino-5-phosphonovaleric acid Sigma 283967 NMDA receptor inhibitor
DAPI Sigma D9542 Nuclei fluorescent stain
DMEM-F12 Gibco 11320033 Cell culture medium
FBS Gibco 11573397 Fetal bovine serum
FBS-Hyclone Fisher Scientific 16291082 Fetal bovine serum
Fluoromount Southern Biotech 0100-01 Mounting medium
ImageJ National Institutes of Health (NIH-USA) Image software
L-Glutamine Lonza BE17-605F
Neurobasal Medium Gibco 21103049 Neuronal cells culture medium
Papain Dissociation System Worthington Biochemical Corporation LK003150 For use in neural cell isolation
PBS Home made
PBS-EDTA Lonza H3BE02-017F
Penicillin/Streptomycin/Amphotericin B Lonza 17-745E Bacteriostatic and bactericidal
Pituitary extract Gibco 13028014 Bovine pituitary extract
Poly -L- lysine (PLL) Sigma A-003-M

Riferimenti

  1. Kanno, H., Pearse, D. D., Ozawa, H., Itoi, E., Bunge, M. B. Schwann cell transplantation for spinal cord injury repair: Its significant therapeutic potential and prospectus. Reviews in the Neurosciences. 26 (2), 121-128 (2015).
  2. Assinck, P., Duncan, G. J., Hilton, B. J., Plemel, J. R., Tetzlaff, W. Cell transplantation therapy for spinal cord injury. Nature Neuroscience. 20 (5), 637-647 (2017).
  3. Lindsay, S. L., Toft, A., Griffin, J., Emraja, A. M. M., Barnett, S. C., Riddell, J. S. Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait coordination after spinal cord injury. Glia. 65 (4), 639-656 (2017).
  4. Moreno-Flores, M. T., et al. A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. Molecular Therapy. 13 (3), 598-608 (2006).
  5. Gilmour, A. D., Reshamwala, R., Wright, A. A., Ekberg, J. A. K., St. John, J. A. Optimizing olfactory ensheathing cell transplantation for spinal cord injury repair. Journal of Neurotrauma. 37 (5), 817-829 (2020).
  6. Barraud, P., et al. Neural crest origin of olfactory ensheathing glia. Proceedings of the National Academy of Sciences of the United States of America. 107, 21040-21045 (2010).
  7. Su, Z., He, C. Olfactory ensheathing cells: biology in neural development and regeneration. Progress in Neurobiology. 92 (4), 517-532 (2010).
  8. Yao, R., et al. Olfactory ensheathing cells for spinal cord injury: sniffing out the issues. Cell Transplant. 27 (6), 879-889 (2018).
  9. Gómez, R. M., et al. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia. 66 (7), 1267-1301 (2018).
  10. Plant, G. W., Harvey, A. R., Leaver, S. G., Lee, S. V. Olfactory ensheathing glia: repairing injury to the mammalian visual system. Experimental Neurology. 229 (1), 99-108 (2011).
  11. Xue, L., et al. Transplanted olfactory ensheathing cells restore retinal function in a rat model of light-induced retinal damage by inhibiting oxidative stress. Oncotarget. 8 (54), 93087-93102 (2017).
  12. Pastrana, E., et al. Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. The Journal of Neuroscience. 26, 5347-5359 (2006).
  13. Pastrana, E., et al. BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons. Neurochemistry International. 50, 491-498 (2007).
  14. Simón, D., et al. Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. Glia. 59, 1458-1471 (2011).
  15. Lim, F., et al. Reversibly immortalized human olfactory ensheathing glia from an elderly donor maintain neuroregenerative capacity. Glia. 58, 546-558 (2010).
  16. García-Escudero, V., et al. Prevention of senescence progression in reversibly immortalized human ensheathing glia permits their survival after deimmortalization. Molecular Therapy. 18, 394-403 (2010).
  17. García-Escudero, V., et al. A neuroregenerative human ensheathing glia cell line with conditional rapid growth. Cell Transplant. 20, 153-166 (2011).
  18. Plaza, N., Simón, D., Sierra, J., Moreno-Flores, M. T. Transduction of an immortalized olfactory ensheathing glia cell line with the green fluorescent protein (GFP) gene: Evaluation of its neuroregenerative capacity as a proof of concept. Neuroscience Letters. 612, 25-31 (2016).
  19. Deumens, R., et al. Alignment of glial cells stimulates directional neurite growth of CNS neurons in vitro. Neuroscienze. 125 (3), 591-604 (2004).
  20. Chung, R. S., et al. Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors. Cell and Molecular Life Sciences. 61 (10), 1238-1245 (2004).
  21. Leaver, S. G., Harvey, A. R., Plant, G. W. Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro. Glia. 53 (5), 467-476 (2006).
  22. Pellitteri, R., Spatuzza, M., Russo, A., Stanzani, S. Olfactory ensheathing cells exert a trophic effect on the hypothalamic neurons in vitro. Neuroscience Letters. 417 (1), 24-29 (2007).
  23. Pellitteri, R., Spatuzza, M., Russo, A., Zaccheo, D., Stanzani, S. Olfactory ensheathing cells represent an optimal substrate for hippocampal neurons: an in vitro study. International Journal of Developmental Neuroscience. 27 (5), 453-458 (2009).
  24. Runyan, S. A., Phelps, P. E. Mouse olfactory ensheathing glia enhance axon outgrowth on a myelin substrate in vitro. Experimental Neurology. 216 (1), 95-104 (2009).
  25. Witheford, M., Westendorf, K., Roskams, A. J. Olfactory ensheathing cells promote corticospinal axonal outgrowth by a L1 CAM-dependent mechanism. Glia. 61 (11), 1873-1889 (2013).
  26. Roloff, F., Ziege, S., Baumgärtner, W., Wewetzer, K., Bicker, G. Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro. BMC Neuroscience. 14, 141 (2013).
  27. Khankan, R. R., Wanner, I. B., Phelps, P. E. Olfactory ensheathing cell-neurite alignment enhances neurite outgrowth in scar-like cultures. Experimental Neurology. 269, 93-101 (2015).
  28. Wigley, C. B., Berry, M. Regeneration of adult rat retinal ganglion cell processes in monolayer culture: comparisons between cultures of adult and neonatal neurons. Brain Research. 470 (1), 85-98 (1988).
  29. Sonigra, R. J., Brighton, P. C., Jacoby, J., Hall, S., Wigley, C. B. Adult rat olfactory nerve ensheathing cells are effective promoters of adult central nervous system neurite outgrowth in coculture. Glia. 25 (3), 256-269 (1999).
  30. Hayat, S., Thomas, A., Afshar, F., Sonigra, R., Wigley, C. B. Manipulation of olfactory ensheathing cell signaling mechanisms: effects on their support for neurite regrowth from adult CNS neurons in coculture. Glia. 44 (3), 232-241 (2003).
  31. Kumar, R., Hayat, S., Felts, P., Bunting, S., Wigley, C. Functional differences and interactions between phenotypic subpopulations of olfactory ensheathing cells in promoting CNS axonal regeneration. Glia. 50 (1), 12-20 (2005).
  32. Moreno-Flores, M. T., Lim, F., Martín-Bermejo, M. J., Díaz-Nido, J., Avila, J., Wandosell, F. Immortalized olfactory ensheathing glia promote axonal regeneration of rat retinal ganglion neurons. Journal of Neurochemistry. 85 (4), 861-871 (2003).
  33. García-Escudero, V., et al. Patient-derived olfactory mucosa cells but not lung or skin fibroblasts mediate axonal regeneration of retinal ganglion neurons. Neuroscience Letters. 509 (1), 27-32 (2012).
  34. Sternberger, L. A., Sternberger, N. H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proceedings of the National Academy of Sciences of the United States of America. 80 (19), 6126-6130 (1983).
  35. Sánchez Martin, C., Díaz-Nido, J., Avila, J. Regulation of a site-specific phosphorylation of the microtubule-associated protein 2 during the development of cultured neurons. Neuroscienze. 87 (4), 861-870 (1998).
  36. Reshamwala, R., Shah, M., Belt, L., Ekberg, J. A. K., St. John, J. A. Reliable cell purification and determination of cell purity: crucial aspects of olfactory ensheathing cell transplantation for spinal cord repair. Neural Regeneration Research. 15 (11), 2016-2026 (2020).
check_url/it/61863?article_type=t

Play Video

Citazione di questo articolo
Portela-Lomba, M., Simón, D., Russo, C., Sierra, J., Moreno-Flores, M. T. Coculture of Axotomized Rat Retinal Ganglion Neurons with Olfactory Ensheathing Glia, as an In Vitro Model of Adult Axonal Regeneration. J. Vis. Exp. (165), e61863, doi:10.3791/61863 (2020).

View Video