Summary

最大等轴泰塔尼奇力测量大鼠的蒂比亚利斯前肌肉

Published: June 26, 2021
doi:

Summary

运动恢复评估仍然是实验外周神经研究的基准结果衡量标准。对大鼠前肌的等分测量是评估坐骨神经缺陷重建后功能结果的宝贵工具。本文详细介绍了方法和细微差别。

Abstract

创伤性神经损伤导致大量功能丧失,段神经缺陷往往需要使用自体介置神经移植。由于其可用性和相关的供体侧发病率有限,神经再生领域的许多研究侧重于替代技术,以弥合部分神经间隙。为了研究手术或药理实验治疗方案的结果,大鼠坐骨神经模型经常被用作生物分析。大鼠模型中使用各种结果测量来确定神经再生的程度。目标肌肉的最大输出力仍然是实验疗法临床转化最相关的结果。对大鼠肌肉收缩的等分力测量以前被描述为一种可重复和有效的技术,用于评估大鼠和兔子模型中神经损伤或修复后的运动恢复。在这段视频中,我们将提供这个宝贵的程序的分步指导,以评估使用优化参数的老鼠坐骨神经缺陷模型中头肌前肌肉的功能恢复。除了手术方法和解剖常见的腹神经和头骨前肌腱外,我们将描述必要的手术前准备。将详细介绍了等轴测泰塔尼奇力测量技术。解释确定最佳肌肉长度和刺激脉冲频率,并测量最大的泰太尼肌肉收缩。

Introduction

外周神经外伤后运动功能丧失对患者生活质量和社会经济地位有重大影响由于4年来手术技术的改善最小,这个病人群体的预后仍然很差。直接端到端无张力硬膜外修复形成黄金标准的手术重建。然而,在神经间隙扩大的情况下,自体神经移植的插位已被证明是优越的5,6。相关的捐赠网站发病率和有限的自体神经移植物的可用性已经强制需要替代技术7,8。

实验动物模型已被用来阐明外周神经再生的机制,并评估各种重建和药理治疗方案8,9的结果。大鼠坐骨神经模型是最常用的动物模型10。它们体积小,便于处理和存放。由于其最高级的神经再生潜力,干预和评估结果之间的时间减少可能导致相对较低的成本11,12。它使用的其他优点包括形态相似于人类神经纤维和大量的比较/历史研究13。虽然应谨慎对待后者,因为研究之间各种不同的结果衡量,使得很难比较结果14、15、16、17、18。

评估神经再生结果的措施范围从电生理学到组织形态学,但这些方法意味着相关性,但不一定直接测量运动功能14,15的恢复。再生神经纤维可能无法建立适当的连接,这可能导致高估功能连接的数量14,15,19,20。最好的和临床上最相关的测量,以证明正确的重新插入末端器官仍然是评估肌肉功能21,22,23。然而,为动物模型创建运动功能评估工具具有挑战性。麦地纳塞利等人首先描述了行走轨迹分析,这是自21、24、25、26、27、28实验中用于评估功能恢复的最常用方法。行走轨迹分析根据对行走大鼠21、29的爪印的测量来量化坐骨功能指数(SFI)。行走轨迹分析的主要局限性,如脚趾收缩、自动变异、打印涂抹以及与其他重新插入措施的关联性差,因此必须使用其他参数来量化功能恢复30、31。

在此前对刘易斯大鼠32和新西兰兔子33的研究中,我们验证了对头骨前部(TA)肌肉的等量泰顿力(ITF)测量,并证明了其在不同类型的神经修复34、35、36、37、38、39后肌肉恢复评估中的有效性。 TA肌肉非常适合,因为它的体积相对较大,内向由坐骨神经的腹膜分支和良好的阐明生化特性40,41,42,43。当肌肉长度(预加载力)和电气参数得到优化时,ITF 提供 32 号大鼠和 33 号兔子的侧向变异性分别为4.4%7.5%。

本文在大鼠坐骨神经模型中提供了ITF测量的详细方案,包括对必要的手术前规划、手术方法和普通腹股神经和解剖TA肌腱的解剖的透彻描述。使用刺激强度和持续时间的预先确定值,将定义最佳肌肉长度和刺激脉冲频率。使用这四个参数,可以随后持续准确地测量 ITF。

Protocol

所有动物程序均经机构动物护理和使用委员会(IACUC A334818)批准执行。 1. 力传感器的校准 确保计算机正确连接到 USB-6009 多功能 I/O 数据采集 (DAQ) 设备,该设备应连接到力传感器。注:其他大鼠菌株和物种可能需要不同的负载细胞力转导器,因为预计更高的力为44。 将定制夹子从经过修改的手术增压器制成,连接到真空基可调杆臂上的?…

Representative Results

用于测量 ITF 测量的五个参数。这些包括肌肉张力(预加载力)、刺激强度(电压)、刺激脉冲频率、0.4毫秒的刺激持续时间和2毫秒的延迟。在测量 ITF 之前,在参数测试期间,必须使用两次强度为 2 V 的单抽搐肌肉收缩来确定最佳肌肉张力。这些刺激会导致爪子的多螺旋,并在 VI (图 5) 中的图形上产生输出信号。理想情况下,这些单抽搐曲线具有代表收缩期的快速垂直?…

Discussion

该协议描述了一个先前验证的方法,以获得准确的最大ITF测量TA肌肉在老鼠模型32。实验性神经重建治疗后最大力量的恢复是临床环境的主要兴趣,因为它证明神经不仅再生,而且与目标肌肉建立工作联系。ITF可用于小神经间隙模型,如大鼠坐骨神经模型32,并且通过对协议的一些修改,它也可以用于更大的神经间隙兔子模型33。

<p class="jove_…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

本出版物中报告的研究得到了国家卫生研究院国家神经系统疾病和中风研究所的支持,该研究所获得第1号RO1 NS 102360奖。内容完全由作者负责,不一定代表国家卫生研究院的官方观点。

Materials

0.9% Sodium Chloride Baxter Healthcare Corporation, Deerfield, IL, USA G130203
1 mm Kirshner wires Pfizer Howmedica, Rutherford, NJ N/A
Adson Tissue Forceps ASSI, Westbury, NY, USA MTK-6801226
Bipolar electrode cables Grass Instrument, Quincy, MA N/A
Bipolar stimulator device Grass SD9, Grass Instrument, Quincy, MA N/A
Cotton-tip Applicators Cardinal Health, Waukegan, IL, USA C15055-006
Curved Mosquito forceps ASSI, Westbury, NY, USA MTK-1201112
Force Transducer MDB-2.5 Transducer Techniques, Temecula, CA N/A
Gauze Sponges 4×4 Covidien, Mansfield, MA, USA 2733
Ground cable Grass Instrument, Quincy, MA N/A
Isoflurane chamber N/A N/A Custom-made
Ketamine Ketalar, Par Pharmaceutical, Chestnut, NJ 42023-115-10
LabView Software National Instruments, Austin, TX
Loop N/A N/A Custom-made
Microsurgical curved forceps ASSI, Westbury, NY, USA JFA-5B
Microsurgical scissors ASSI, Westbury, NY, USA SAS-15R-8-18
Microsurgical straight forceps ASSI, Westbury, NY, USA JF-3
Retractor ASSI, Westbury, NY, USA AG-124426
Scalpel Blade No. 15 Bard-Parker, Aspen Surgical, Caledonia, MI, USA 371115
Slim Body Skin Stapler Covidien, Mansfield, MA, USA 8886803512
Subminiature electrode Harvard Apparatus, Holliston, MA N/A
Surgical Nerve Stimulator Checkpoint Surgical LCC, Cleveland, OH, USA 9094
Terrell Isoflurane Piramal Critical Care Inc., Bethlehem, PA, USA H961J19A
Testing platform N/A N/A Custom-made
Tetontomy Scissors ASSI, Westbury, NY, USA ASIM-187
Traceable Big-Digit Timer/Stopwatch Fisher Scientific, Waltham, MA, USA S407992
USB-6009 multifunctional I/O data acquisition (DAQ) device National Instruments, Austin, TX 779026-01
Vacuum Base Holder Noga Engineering & Technology Ltd., Shlomi, Isreal N/A Attached clamp is custom-made
Weight (10 g) Denver Instruments, Denver, CO, USA 820010.4
Weight (20 g) Denver Instruments, Denver, CO, USA 820020.4
Weight (50 g) Denver Instruments, Denver, CO, USA 820050.4
Xylazine Xylamed, Bimeda MTC Animal Health, Cambridge, Canada 1XYL002

Riferimenti

  1. Taylor, C. A., Braza, D., Rice, J. B., Dillingham, T. The incidence of peripheral nerve injury in extremity trauma. American Journal of Physical Medicine & Rehabilitation. 87 (5), 381-385 (2008).
  2. Huckhagel, T., Nuchtern, J., Regelsberger, J., Lefering, R., TraumaRegister, D. G. U. Nerve injury in severe trauma with upper extremity involvement: evaluation of 49,382 patients from the TraumaRegister DGU(R) between 2002 and 2015. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 26 (1), 76 (2018).
  3. Tapp, M., Wenzinger, E., Tarabishy, S., Ricci, J., Herrera, F. A. The Epidemiology of Upper Extremity Nerve Injuries and Associated Cost in the US Emergency Departments. Annals of Plastic Surgery. 83 (6), 676-680 (2019).
  4. Grinsell, D., Keating, C. P. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BioMed Research International. 2014, 698256 (2014).
  5. Terzis, J., Faibisoff, B., Williams, B. The nerve gap: suture under tension vs. graft. Plastic and Reconstructive Surgery. 56 (2), 166-170 (1975).
  6. Millesi, H. Forty-two years of peripheral nerve surgery. Microsurgery. 14 (4), 228-233 (1993).
  7. Wood, M. D., Kemp, S. W., Weber, C., Borschel, G. H., Gordon, T. Outcome measures of peripheral nerve regeneration. Annals of Anatomy-Anatomischer Anzeiger. 193 (4), 321-333 (2011).
  8. Alvites, R., et al. Peripheral nerve injury and axonotmesis: State of the art and recent advances. Cogent Medicine. 5 (1), 1466404 (2018).
  9. Diogo, C. C., et al. The use of sheep as a model for studying peripheral nerve regeneration following nerve injury: review of the literature. Journal of Neurology Research. 39 (10), 926-939 (2017).
  10. Irintchev, A. Potentials and limitations of peripheral nerve injury models in rodents with particular reference to the femoral nerve. Annals of Anatomy. 193 (4), 276-285 (2011).
  11. Brenner, M. J., et al. Role of timing in assessment of nerve regeneration. Microsurgery. 28 (4), 265-272 (2008).
  12. Vleggeert-Lankamp, C. L. The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. Laboratory investigation. Journal of Neurosurgery. 107 (6), 1168-1189 (2007).
  13. Deumens, R., Marinangeli, C., Bozkurt, A., Brook, G. A. Assessing motor outcome and functional recovery following nerve injury. Methods in Molecular Biology. 1162, 179-188 (2014).
  14. Dellon, A. L., Mackinnon, S. E. Selection of the appropriate parameter to measure neural regeneration. Annals of Plastic Surgery. 23 (3), 197-202 (1989).
  15. Munro, C. A., Szalai, J. P., Mackinnon, S. E., Midha, R. Lack of association between outcome measures of nerve regeneration. Muscle Nerve. 21 (8), 1095-1097 (1998).
  16. Varejao, A. S., Melo-Pinto, P., Meek, M. F., Filipe, V. M., Bulas-Cruz, J. Methods for the experimental functional assessment of rat sciatic nerve regeneration. Journal of Neurology Research. 26 (2), 186-194 (2004).
  17. Hadlock, T. A., Koka, R., Vacanti, J. P., Cheney, M. L. A comparison of assessments of functional recovery in the rat. Journal of the Peripheral Nervous System. 4 (3-4), 258-264 (1999).
  18. Kanaya, F., Firrell, J. C., Breidenbach, W. C. Sciatic function index, nerve conduction tests, muscle contraction, and axon morphometry as indicators of regeneration. Plastic and Reconstructive Surgery. 98 (7), 1264-1271 (1996).
  19. Nichols, C. M., et al. Choosing the correct functional assay: a comprehensive assessment of functional tests in the rat. Behavioural Brain Research. 163 (2), 143-158 (2005).
  20. Terzis, J. K., Smith, K. J. Repair of severed peripheral nerves: comparison of the “de Medinaceli” and standard microsuture methods. Experimental Neurology. 96 (3), 672-680 (1987).
  21. de Medinaceli, L., Freed, W. J., Wyatt, R. J. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Experimental Neurology. 77 (3), 634-643 (1982).
  22. Doi, K., Hattori, Y., Tan, S. H., Dhawan, V. Basic science behind functioning free muscle transplantation. Clinics in Plastic Surgery. 29 (4), (2002).
  23. Vathana, T., et al. An Anatomic study of the spinal accessory nerve: Extended harvest permits direct nerve transfer to distal plexus targets. Clinical Anatomy. 20 (8), 899-904 (2007).
  24. Chaiyasate, K., Schaffner, A., Jackson, I. T., Mittal, V. Comparing FK-506 with basic fibroblast growth factor (b-FGF) on the repair of a peripheral nerve defect using an autogenous vein bridge model. Journal of Investigative Surgery. 22 (6), 401-405 (2009).
  25. Lee, B. K., Kim, C. J., Shin, M. S., Cho, Y. S. Diosgenin improves functional recovery from sciatic crushed nerve injury in rats. Journal of Exercise Rehabilitation. 14 (4), 566-572 (2018).
  26. Lubiatowski, P., Unsal, F. M., Nair, D., Ozer, K., Siemionow, M. The epineural sleeve technique for nerve graft reconstruction enhances nerve recovery. Microsurgery. 28 (3), 160-167 (2008).
  27. Luis, A. L., et al. Use of PLGA 90:10 scaffolds enriched with in vitro-differentiated neural cells for repairing rat sciatic nerve defects. Tissue Engineering, Part A. 14 (6), 979-993 (2008).
  28. Shabeeb, D., et al. Histopathological and Functional Evaluation of Radiation-Induced Sciatic Nerve Damage: Melatonin as Radioprotector. Medicina. 55 (8), (2019).
  29. Bain, J. R., Mackinnon, S. E., Hunter, D. A. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plastic and Reconstructive Surgery. 83 (1), 129-138 (1989).
  30. Monte-Raso, V. V., Barbieri, C. H., Mazzer, N., Yamasita, A. C., Barbieri, G. Is the Sciatic Functional Index always reliable and reproducible. Journal of Neuroscience Methods. 170 (2), 255-261 (2008).
  31. Lee, J. Y., et al. Functional evaluation in the rat sciatic nerve defect model: a comparison of the sciatic functional index, ankle angles, and isometric tetanic force. Plastic and Reconstructive Surgery. 132 (5), 1173-1180 (2013).
  32. Shin, R. H., et al. Isometric tetanic force measurement method of the tibialis anterior in the rat. Microsurgery. 28 (6), 452-457 (2008).
  33. Giusti, G., et al. Description and validation of isometric tetanic muscle force test in rabbits. Microsurgery. 32 (1), 35-42 (2012).
  34. Bulstra, L. F., et al. Functional Outcome after Reconstruction of a Long Nerve Gap in Rabbits Using Optimized Decellularized Nerve Allografts. Plastic and Reconstructive Surgery. 145 (6), 1442-1450 (2020).
  35. Giusti, G., et al. The influence of vascularization of transplanted processed allograft nerve on return of motor function in rats. Microsurgery. 36 (2), 134-143 (2016).
  36. Giusti, G., et al. The influence of nerve conduits diameter in motor nerve recovery after segmental nerve repair. Microsurgery. 34 (8), 646-652 (2014).
  37. Hundepool, C. A., et al. Comparable functional motor outcomes after repair of peripheral nerve injury with an elastase-processed allograft in a rat sciatic nerve model. Microsurgery. 38 (7), 772-779 (2018).
  38. Lee, J. Y., et al. The effect of collagen nerve conduits filled with collagen-glycosaminoglycan matrix on peripheral motor nerve regeneration in a rat model. Journal of Bone and Joint Surgery. 94 (22), 2084-2091 (2012).
  39. Shin, R. H., Friedrich, P. F., Crum, B. A., Bishop, A. T., Shin, A. Y. Treatment of a segmental nerve defect in the rat with use of bioabsorbable synthetic nerve conduits: a comparison of commercially available conduits. Journal of Bone and Joint Surgery. 91 (9), 2194-2204 (2009).
  40. Coombes, J. S., et al. Effects of vitamin E deficiency on fatigue and muscle contractile properties. Eur J Appl Physiol. 87 (3), 272-277 (2002).
  41. Kauvar, D. S., Baer, D. G., Dubick, M. A., Walters, T. J. Effect of fluid resuscitation on acute skeletal muscle ischemia-reperfusion injury after hemorrhagic shock in rats. Journal of the American College of Surgeons. 202 (6), 888-896 (2006).
  42. Murlasits, Z., et al. Resistance training increases heat shock protein levels in skeletal muscle of young and old rats. Experimental Gerontology. 41 (4), 398-406 (2006).
  43. Zhou, Z., Cornelius, C. P., Eichner, M., Bornemann, A. Reinnervation-induced alterations in rat skeletal muscle. Neurobiology of Disease. 23 (3), 595-602 (2006).
  44. Schmoll, M., et al. In-situ measurements of tensile forces in the tibialis anterior tendon of the rat in concentric, isometric, and resisted co-contractions. Physiological Reports. 5 (8), (2017).
  45. Heinzel, J. C., Hercher, D., Redl, H. The course of recovery of locomotor function over a 10-week observation period in a rat model of femoral nerve resection and autograft repair. Brain and Behavior. 10 (4), 01580 (2020).
  46. Kingery, W. S., Vallin, J. A. The development of chronic mechanical hyperalgesia, autotomy and collateral sprouting following sciatic nerve section in rat. Pain. 38 (3), 321-332 (1989).
  47. Weber, R. A., Proctor, W. H., Warner, M. R., Verheyden, C. N. Autotomy and the sciatic functional index. Microsurgery. 14 (5), 323-327 (1993).
  48. Kunst, G., Graf, B. M., Schreiner, R., Martin, E., Fink, R. H. Differential effects of sevoflurane, isoflurane, and halothane on Ca2+ release from the sarcoplasmic reticulum of skeletal muscle. Anesthesiology. 91 (1), 179-186 (1999).
  49. Schmoll, M., et al. A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats. PLoS One. 12 (9), 0185209 (2017).
  50. Paul, R. J., Sperelakis, N. . Cell Physiology Source Book (Fourth Edition). , 801-821 (2012).
check_url/it/61926?article_type=t

Play Video

Citazione di questo articolo
Bedar, M., Saffari, T. M., Friedrich, P. F., Giusti, G., Bishop, A. T., Shin, A. Y. Maximum Isometric Tetanic Force Measurement of the Tibialis Anterior Muscle in the Rat. J. Vis. Exp. (172), e61926, doi:10.3791/61926 (2021).

View Video