Summary

使用微流体混合平台为基因传递制订和定性脂质纳米粒子

Published: February 25, 2021
doi:

Summary

脂质纳米粒子是使用微流体混合平台方法开发的,用于mRNA和DNA封装。

Abstract

基于脂质的药物载体由于体积小、生物相容性和封装效率高,已用于临床和商业上可用的交付系统。使用脂质纳米粒子(LNPs)封装核酸有利于保护RNA或DNA免受降解,同时促进细胞吸收。LNPs 通常含有多种脂质成分,包括电离子脂、辅助脂质、胆固醇和聚乙烯乙二醇 (PEG) 结合脂质。LNPs 可以很容易地封装核酸,由于电离子脂质的存在,在低 pH 值是阴离子的,并允许与负电压 RNA 或 DNA 的复合。在这里,LNPs是通过封装信使RNA(mRNA)或质粒DNA(pDNA)形成的,使用有机相中的脂质成分和在声相中核酸成分的快速混合。这种混合使用精确的微流体混合平台进行,允许纳米粒子自组装,同时保持层流。水动力学大小和多散射是使用动态光散射 (DLS) 测量的。LNP 上的有效表面电荷通过测量 zeta 电位来确定。封装效率的特点是使用荧光染料来量化包裹的核酸。具有代表性的结果表明,该方法具有可重复性,并且不同的配方和工艺参数对已开发的 LNP 具有影响。

Introduction

药物携带者用于保护和提供具有典型有利特性的治疗,包括低细胞毒性,增加生物可用性,并改善稳定性1,2,3。聚合物纳米粒子、鼠类和脂质粒子以前曾被探索过核酸封装和输送4、5、6、7。脂质已用于不同类型的纳米载体系统,包括脂质体和脂质纳米粒子,因为它们与高稳定性8生物相容。LNPs可以很容易地封装核酸的基因传递9,10。它们保护核酸在系统循环过程中不受血清蛋白酶的降解,并可以改善对特定部位的输送,因为LNPs的表面地形和物理特性会影响其生物分布12。LNPs还改善组织渗透和细胞吸收9。先前的研究表明,在LNP13中,西RNA封装取得了成功,包括首个含有西RNA治疗遗传性转乙酰激素介质淀粉样体病的LNP治疗药物,该疗法于2018年获得美国食品和药物管理局(FDA)和欧洲药品管理局的批准。最近,正在研究LNPs的交付更大的核酸,即mRNA和DNA9。截至2018年,有+22个基于脂质的核酸输送系统正在进行临床试验14。此外,含有LNPs的mRNA目前是主要候选者,并已受雇于COVID-19疫苗15,16。这些非病毒基因疗法的潜在成功需要形成小(+100 nm),稳定和均匀的粒子与高核酸封装。

在LNP配方中使用电离子脂作为主要成分,在复合、封装和递送效率14方面显示出优势。离子脂质通常具有酸分离常数 (pKa) < 7:例如,二烯酰-4-二甲基丁基丁酸酯(D-Lin-MC3-DMA),在FDA批准的LNP配方中使用的电离子脂质,pKa为6.4417。在低pH值下,电离子脂质上的胺组变得质子化和正电荷,允许在mRNA和DNA上与负电荷磷酸盐组组装。胺、”N”、组与磷酸盐、”P”的比例,用于优化组件。N/P比率取决于使用的脂质和核酸,根据配方18而异。形成后,pH值可调整为中性或生理pH值,以便进行治疗管理。在这些 pH 值下,电离脂质也脱质,从而向 LNP 提供中性表面电荷。

电离子脂也有助于内分泌逃生19,20。LNPs在细胞吸收过程中接受内分泌,必须从内皮体中释放出来,以便将mRNA货物送入细胞质或DNA货物到细胞核21。内皮体内部通常比细胞外介质更酸性,使电离子脂质正电荷22,23。带正电荷的电离子脂质可与内分泌脂膜上的负电荷相互作用,从而导致内皮体不稳定,从而释放LNP和核酸。目前正在研究不同的电离子脂质,以提高LNP分布的功效,以及内分泌逃逸14。

LNP 的其他典型成分包括辅助脂质,如磷脂酰胆碱 (PC) 或磷乙醇胺 (PE) 脂质。1,2-二甲苯-sn-甘油-3-磷乙醇胺(多普),1,2-二乙酰-sn-甘油-3-磷 磷胆碱 (DSPC), 和 1,2 二醇 – sn-甘油-3 磷胆碱 (DOPC) 是常用的辅助脂质2425.DOPE已被证明形成一个倒置的六边形II(HII)相,并通过膜融合26增强透射,而DSPC已被认为稳定LNPs与圆柱形几何27。胆固醇也被纳入配方,以增加膜刚度,随后有助于LNP的稳定。最后,脂质结合聚乙烯乙二醇(PEG)被纳入配方,以提供必要的石碑屏障,以帮助在粒子自组装27。PEG 还通过防止聚合来提高 LNP 的存储稳定性。此外,PEG 经常被用作隐形组件,可以增加 LNP 的循环时间。然而,这一属性也可能构成挑战,招募LNPs肝细胞通过内源性定位机制驱动的阿波利波蛋白E(ApoE)28。因此,研究已经调查了从LNP扩散PEG的乙酰链长度,发现短长度(C8-14)与LNP分离,更适合ApoE招募相比,更长的乙酰长度28。此外,PEG 与之结合的脂质尾巴饱和程度已证明会影响 LNPs29的组织分布。最近,Tween 20,这是生物药物制剂中常用的表面活性剂,具有长期不饱和脂质的尾巴,与PEG-DSPE相比,在排出淋巴结方面具有很高的转化性,PEG-DSPE主要在注射部位29处对肌肉进行透射。此参数可以优化,以实现所需的 LNP 生物分布。

传统的LNP形成方法包括薄膜水化法和乙醇注射法27。虽然这些是现成的技术,他们也是劳动密集型的,可能会导致低封装效率,并具有挑战性地扩大27。混合技术的进步使得方法更易放大,同时开发出更均匀的粒子27。这些方法包括T结混合,交错鱼骨混合,微流体流体动力学聚焦27。每种方法都有独特的结构,但都允许快速混合含有核酸的一个液态与含有脂质成分的有机相,从而产生高封装的核酸27。在此协议中,利用通过微流体墨盒进行快速和可控的混合,采用交错的鱼骨混合设计。本协议概述了含有 LNPs 的核酸的制备、组装和定性。

Protocol

图1提供了整个过程的示意图。 1. 准备缓冲器 注意:这里强烈建议对缓冲器进行无菌过滤,以去除可能影响核酸和 LNP 质量的任何颗粒物。 磷酸盐缓冲盐水 (PBS) 使用 8 mM Na2HPO 4、2 mM KH2PO4、137 mM NaCl 和 2.7 mM KCl 在核酸酶无水中准备 1x PBS,并将 pH 值调整为 7.4。 使用 0.22 μm 孔?…

Representative Results

在不同的天开发了多批具有相同脂质配方和6的NPP,以证明该技术的可重复性。第1批和第2批导致大小分布重叠,具有类似的多散(图2A),在两个不同批次之间的大小或封装效率方面没有显著差异(图2B)。每批封装效率高(>98.5%),尺寸与77纳米LNP直径相似。颗粒均匀,第 1 批的平均多分散度指数 (PDI) 为 0.15,第 2 批的平均…

Discussion

与其他现有方法(如脂膜水化和乙醇注射)相比,可重复性、速度和低体积筛选是使用微流体混合形成 LNP 的重要优势。我们已经证明了这种方法的可重复性,对用不同的LNP批次观察到的封装效率或颗粒大小没有影响。这是任何治疗,包括LNPs,成为临床可用的基本标准。

这里描述的技术采用交错的鱼骨微流体混合,这导致LNP形成的时间尺度只有几分钟。这种混合使用混沌的?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

感谢阿图尔·萨卢贾、亚廷·戈卡恩、玛丽亚-特雷莎·佩拉基亚、沃尔特·施文格和菲利普·扎卡斯对LNP发展的指导和贡献。

Materials

1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (C-14 PEG) Avanti Polar Lipids 880151P
10 µl Graduated Filter Tips  (RNase-,DNase-, DNA-free) USA Scientific 1121-3810
1000 µl Graduated Filter Tips (RNase-,DNase-, DNA-free) USA Scientific 1111-2831
20 µl Beveled Filter Tips (RNase-,DNase-, DNA-free) USA Scientific 1120-1810
200 µl Graudated Filter Tips (RNase-,DNase-, DNA-free) USA Scientific 1120-8810
3β-Hydroxy-5-cholestene, 5-Cholesten-3β-ol (Cholesterol) Sigma-Aldrich C8667
BD Slip Tip Sterile Syringes (1 ml syringe) Thermo Fisher Scientific 14-823-434
BD Slip Tip Sterile Syringes (3 ml syringe) Thermo Fisher Scientific 14-823-436
BD Vacutainer General Use Syringe Needles (BD Blunt Fill Needle 18G) Thermo Fisher Scientific 23-021-020
Benchtop Centrifuge Beckman coulter
Black 96 well plates Thermo Fisher Scientific 14-245-177
BrandTech BRAND BIO-CERT RNase-, DNase-, DNA-free microcentrifuge tubes (1.5mL) Thermo Fisher Scientific 14-380-813
Citric Acid Fisher Scientific 02-002-611
Corning 500ml Vacuum Filter/Storage Bottle System, 0.22 um pore Corning 430769
Disposable folded capillary cells Malvern DTS1070
Ethyl Alcohol, Pure 200 proof Sigma-Aldrich 459844
Fisher Brand Semi-Micro Cuvette Thermo Fisher Scientific 14955127
Invitrogen Conical Tubes (15 mL) (DNase-RNase-free) Thermo Fisher Scientific AM12500
MilliporeSigma Amicon Ultra Centrifugal Filter Units Thermo Fisher Scientific UFC901024
NanoAssemblr Benchtop Precision Nanyosystems
Nuclease-free water Thermo Fisher Scientific AM9930
Phosphate Buffered Saline (PBS) Thermo Fisher Scientific AM9624
Quant-iT PicoGreen dsDNA Assay Kit Thermo Fisher Scientific  P7589
Quant-iT RiboGreen RNA Assay Kit Thermo Fisher Scientific R11490
Sodium Chloride Fisher Scientific 02-004-036
Sodium Citrate, Dihydrate, granular Fisher Scientific 02-004-056
SpectraMax i3x Molecular Devices
Zetasizer Nano Malvern

Riferimenti

  1. Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., Langer, R., et al. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery. , 1-24 (2020).
  2. Davis, M. E., Chen, Z., Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanoscience and technology: A collection of reviews from nature journals. (239), 250 (2010).
  3. Patra, J. K., Das, G., Fraceto, L. F., et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 16 (71), (2018).
  4. Rai, R., Alwani, S., Badea, I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers. 11 (4), 745 (2019).
  5. Bailey, C. M., Nagarajan, R., Camesano, T. A. Designing polymer micelles of controlled size, stability, and functionality for siRNA delivery. ACS Symposium Series. 1271, 35-70 (2017).
  6. Yin, H., et al. Non-viral vectors for gene-based therapy. Nature Reviews Genetics. 15 (8), 541-555 (2014).
  7. Bailey-Hytholt, C. M., Nagarajan, R., Camesano, T. A. Förster resonance energy transfer probing of assembly and disassembly of short interfering RNA/Poly(ethylene glycol)-Poly-L-Lysine polyion complex micelles. Molecular Assemblies: Characterization and Applications. , 47-60 (2020).
  8. Puri, A., Loomis, K., Smith, B. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 26 (6), 523-580 (2009).
  9. Cullis, P. R., Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Molecular Therapy. 25 (7), 1467-1475 (2017).
  10. Munsell, E. V., Ross, N. L., Sullivan, M. O. Journey to the center of the cell: Current Nanocarrier design strategies targeting biopharmaceuticals to the cytoplasm an nucleus. Current Pharmaceutical Design. 22 (9), 1227-1244 (2016).
  11. Zhao, Y., Huang, L. Lipid nanoparticles for gene delivery. Advances in Genetics. 88, 13-36 (2014).
  12. Chen, S., et al. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. Journal of Controlled Release. 235, 236-244 (2016).
  13. Wan, C., Allen, T. M., Cullis, P. R. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Delivery and Translational Research. 4 (1), 74-83 (2014).
  14. Kulkarni, J. A., Cullis, P. R., Van Der Meel, R. Lipid nanoparticles enabling gene therapies: From concepts to clinical utility. Nucleic Acid Therapeutics. 28 (3), 146-157 (2018).
  15. Shin, M. D., et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology. 15 (8), 646-655 (2020).
  16. Thanh Le, T., et al. The COVID-19 vaccine development landscape. Nature Reviews. Drug Discovery. 19 (5), 305-306 (2020).
  17. Tam, Y. Y. C., Chen, S., Cullis, P. R. Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics. 5 (3), 498-507 (2013).
  18. Cayabyab, C., Brown, A., Tharmarajah, G., Thomas, A. mRNA lipid nanoparticles. Precision Nanosystems Application Note. , (2019).
  19. Gilleron, J., et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nature Biotechnology. 31 (7), 638-646 (2013).
  20. Suzuki, Y., Ishihara, H. Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid. International Journal of Pharmaceutics. 510 (1), 350-358 (2016).
  21. Kowalski, P. S., Rudra, A., Miao, L., Anderson, D. G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Molecular Therapy. 27 (4), 710-728 (2019).
  22. Schmid, J. A. The acidic environment in endocytic compartments. Biochemical Journal. 303 (2), 679-680 (1994).
  23. Maugeri, M., et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nature Communications. 10 (1), (2019).
  24. Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y., Cullis, P. R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. (45), (2019).
  25. Hafez, I. M., Maurer, N., Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Therapy. 8 (15), 1188-1196 (2001).
  26. Hafez, I. M., Culis, P. R. Roles of lipid polymorphism in intracellular delivery. Advanced Drug Delivery Reviews. 47 (2-3), 139-148 (2001).
  27. Evers, M. J. W., et al. State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods. 2 (9), 1700375 (2018).
  28. Mui, B. L., et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Molecular Therapy – Nucleic Acids. 2 (139), (2013).
  29. Zukancic, D., et al. The importance of poly(Ethylene glycol) and lipid structure in targeted gene delivery to lymph nodes by lipid nanoparticles. Pharmaceutics. 12 (11), 1-16 (2020).
  30. NEBioCalculator. New England BioLabs Inc Available from: https://nebiocalculator.neb.com/#!/formulas (2020)
  31. Kastner, E., et al. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. International Journal of Pharmaceutics. 477 (1-2), 361-368 (2014).
  32. Zhigaltsev, I. V., et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir. 28 (7), 3633-3640 (2012).
  33. Belliveau, N. M., et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Molecular Therapy – Nucleic Acids. 1 (8), 37 (2012).
  34. Hassett, K. J., et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Molecular Therapy – Nucleic Acids. 15, 1-11 (2019).
  35. Tanaka, H., et al. The delivery of mRNA to colon inflammatory lesions by lipid-nano-particles containing environmentally-sensitive lipid-like materials with oleic acid scaffolds. Heliyon. 4 (12), 00959 (2018).
  36. Singh, J., et al. Nucleic acid lipid nanoparticles. Precision Nanosystems Application Note. , (2018).
check_url/it/62226?article_type=t

Play Video

Citazione di questo articolo
Bailey-Hytholt, C. M., Ghosh, P., Dugas, J., Zarraga, I. E., Bandekar, A. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform. J. Vis. Exp. (168), e62226, doi:10.3791/62226 (2021).

View Video