Summary

线粒体疾病脑 膜炎基因 模型中量化动物活动的实验方法比较分析

Published: April 04, 2021
doi:

Summary

本研究为C.elegans复合I病气体-1(fc21)蠕虫(即斑马实验室(中通量检测)和WormScan(高通量检测)的两种半自动运动体活性分析方法提供了协议,并在各种研究方法中提供了比较分析,以量化线虫行为和综合神经肌肉功能。

Abstract

卡诺哈布迪炎埃莱甘斯被广泛认可为一种转化动物模型,可以有效地询问各种人类疾病的机制和疗法。蠕虫特别适合高通量基因和药物筛选,通过利用其快速发展周期、大育雏规模、短寿命、微观透明度、低维护成本、强大的基因组工具套件、突变存储库和实验方法来深入了解治疗靶点和疗法,从而对活体和前体内生理学进行询问。蠕虫体活性代表一种特别相关的表型,经常在线粒体疾病中受损,线粒体疾病在病因和表现上高度异质,但共同具有产生细胞能量的能力受损。虽然一套不同的方法可用于询问蠕虫行为,但这些方法在实验成本、复杂性和基因组或药物高通量屏幕的效用方面差异很大。在这里,比较了16种不同活性分析方法的相对产量、优势和局限性,在C.elegans的单个蠕虫或蠕虫群中对线虫运动、颤动、咽抽吸和/或化疗进行量化,时间不同。elegans的单个蠕虫或蠕虫种群在不同阶段、年龄和实验持续时间。演示了两种半自动化方法的详细协议,以量化代表现有软件工具新应用的线虫运动体活动,即 ZebraLab(中等吞吐量方法)和 WormScan(高通量方法)。应用这些方法的数据表明,类似的减少动物活动发生在L4幼虫阶段,并在第一天成人进展,在线粒体复合I病(气体-1(fc21)突变蠕虫相对于野生类型(N2布里斯托尔)C.elegans。这些数据验证了使用 ZebraLab 或 WormScan 软件工具高效、客观地量化蠕虫运动活动的这些新应用的效用,具有可变容量,支持线粒体疾病临床前动物模型中对蠕虫行为进行高通量药物筛查。

Introduction

卡诺哈比德炎是公认的神经科学的杰出模型,因为它有302个神经元,协调所有蠕虫的行为,包括交配,喂养,产卵,排便,游泳和固体介质1运动。这些造虫线虫也广泛用于理解广泛的人类疾病机制,其良好的基因组特征和高同源性 +80% 的基因之间的C. elegans和人类2,3,4.长期以来,C.elegans一直被用来询问人类线粒体疾病5,6,7,8,9,10,这是一个高度遗传和表型异构的遗传代谢紊乱组,共享受损的能力,以产生细胞能量,往往临床存在严重受损的神经肌肉功能,运动不耐受和疲劳11 121314。为此,使用C.elegans模型,能够对线粒体疾病不同遗传亚型动物活动和神经肌肉功能的定量方面进行临床前建模,以及它们对可能改善其神经肌肉功能和整体活动的候选人疗法的反应。

C.elegans的神经肌肉活动通过一系列实验方法客观地可以测量,包括手动和半自动方法,允许在固体或液体介质(表1)1,15进行功能分析。准确量化C.elegans活动已被证明对与肌肉和神经系统16、17、18的功能和发展有关的发现非常重要。本研究总结并比较了17种不同检测方法的实验要求、优势和局限性,这些分析可以在研究实验室中进行,以评估C.elegans疾病模型中的四个关键结果的神经肌肉功能和活动,这些结果既在一系列发育阶段和年龄的基线上,也针对候选疗法(表1)).事实上,该研究提供了详细的概述,以描述C.elegans击打率(身体弯曲每分钟),体液活动,咽抽水,和化疗在每种情况下,具体说明使用的实验和分析方法,每种方法的优势和局限性,设备和软件需要执行和分析每个检测, 以及每种方法的吞吐量,以支持其用于高通量基因或药物筛选目的。根据实验协议的复杂性(包括蠕虫维护、处理时间、使用单井或多井板以及/或完成实验设置和数据分析所需的实验时间)来描述每个检测的吞吐量为低、中或高。

手动分析击打19,龙体活性20,咽泵17,21,化疗22,23是公认的方法来评估蠕虫活动,需要立体显微镜24。虽然测量蠕虫的击打活性需要分析液体介质,以确定每分钟身体弯曲的频率,但蠕虫的体压活动可以用固体介质或液体介质来测量。但是,对单个蠕虫活动的手动分析本身就很费时,并且涉及不可避免的用户生成的偏差。蠕虫活动分析的自动化可最大限度地减少用户生成的偏差,并可大幅提高实验吞吐量25。液体介质中蠕虫击打活动的视频录音可以使用”wrMTrck”(ImageJ插件26)进行分析。然而,最初为wMTrck开发的实验设置限制了其效用,因为单个液体掉落中的蠕虫太多导致蠕虫重叠,使得精确跟踪变得困难。虽然这个实验限制已经解决了27,wrMTrck方法不能支持高通量筛选。

存在一系列方法来量化基线的蠕虫运动体活动,并响应C.elegans线粒体疾病模型中的候选疗法。其中包括斑马实验室(视点生命科学),Tierpsy跟踪器28,宽视场线虫跟踪平台(WF-NTP)29,蠕虫汽车,蠕虫观察器30,蠕虫实验室31,无限芯片32,和W微轨跟踪器133(表1)。这些方法能够同时分析多蠕虫菌株或条件下的移动,通常位于多井板上,从而支持高通量药物筛选应用。其中一些方法具有独特的考虑因素,可能会限制或增强其通用性,例如需要昂贵的设备而不是开放访问软件,以及执行实验协议的不同易用性。总体而言,没有一个实验系统或协议非常适合所有C.elegans运动实验。相反,重要的是要仔细选择哪种方法最适合特定的调查员的实验目标和要求。

咽部抽水是评估C.elegans神经肌肉活动的另一个重要结果。C.elegans咽由20个肌肉细胞、20个神经元和20个其他细胞组成,这些细胞能够在蠕虫的胃道34、35、36的前端摄入大肠杆菌大肠杆菌)。已建立了若干手动方法,以确定咽抽水率17,21,37,38。大多数方法是基于使用立体显微镜和相机可视化和记录咽抽吸频率与实验观察者21直接计数。通过执行称为电磷图 (EPG) 的细胞外记录,可以进行自动咽泵速率分析,该记录提供了有关每个泵39持续时间的其他信息。在微流体系统WormSpa中,也可以进行咽部抽吸率分析,其中单个蠕虫被限制在40、41室中。一种可用于促进咽泵速率分析的商业方法是 ScreenChip 系统(InVivo 生物系统),它测量、可视化和分析在自定义芯片中固定的单个蠕虫中喂养行为的神经肌肉方面。这种咽抽水定量方法可用于评估神经元和生理对药物的反应,衰老,和其他因素42,43,44,45。

切莫塔西斯描述了 C.elegans 的运动,以响应在线虫生长介质(NGM)板块的定义区域放置远离蠕虫的气味。评估化疗反应提供了蠕虫神经元和神经肌肉活动的综合测量,通过观察和测量蠕虫在规定的时间段46中向气味剂移动的物理距离来量化。多蠕虫跟踪器是一种自动方法,可用于提高实验效率,量化蠕虫向吸引者或驱虫剂47的距离。

在这里,描述了为量化蠕虫活动而建立的两种新型半自动化方法的详细协议。第一种方法利用ZebraLab一种最初开发用于研究Danio rerio(斑马鱼)游泳活动的商业软件,用于一种新的中等通量应用,根据运动过程中的像素变化(表1,图1)量化C.elegans液体介质中的整体运动体活动。数据输出是从大量并发条件和在玻璃滑梯上分析的样品中快速获得的,尽管这种方法不适合多井板格式。第二种方法是对WormScan方法48,49(图2)的全新改编,它使用平板扫描仪创建两个连续扫描的差分图像,可以与开源软件一起使用,从而能够半自动定量分析综合生理结果,如生育和生存。在这里,开发了一种新的WormScan方法,以量化每口96井平底板15个幼虫阶段4(L4)蠕虫种群中液体介质中的蠕虫体活性。这种半自动化和低成本的WormScan方法可以很容易地适应高通量的药物筛选,以及分析各种动物阶段和年龄48,49岁。

在这里,使用斑马实验室和WormScan半自动化方法分析C.elegans运动活动的协议和有效性在线粒体复合物I病,气体-1(fc21)的成熟C.elegans模型中得到了证明。气体-1(K09A9.5基因)是人类NDUFS2(NADH:尿素氧化物酶核(铁硫蛋白)子组2)(图3)的正词。C.elegans气体-1(fc21)突变菌株携带同源p.R.R.290K误入原位突变在NDUFS250的人类正统,导致显著减少的生育和寿命, 受损的呼吸链氧化磷化(OXPHOS)容量51,以及线粒体质量和膜潜力降低,增加氧化应激5,8 .尽管过去二十年来它已久经研究线粒体疾病,但此前没有报告过气体-1(fc21)突变体的体活性。在这里,ZebraLab和WormScan方法被应用于独立量化气体-1(fc21)与野生类型(WT,N2布里斯托尔)蠕虫的旋孔活性,既作为验证方法的一种方式,也是为了证明其实验协议和信息学分析的相对效用和效率。ZebraLab 软件允许快速量化C. elegans线粒体疾病模型中蠕虫运动者活动的几个并发条件,并有可能应用于有针对性的药物筛选或验证研究。WormScan 分析尤其适合于方便地启用复合库的高通量药物筛选,并优先考虑改善原发线粒体疾病临床前C. elegans模型中的动物神经肌肉功能和运动体活性的引线。

Protocol

1. 使用 ZebraLab 软件在玻璃幻灯片上的液体介质中的蠕虫运动器活动分析 线虫生长和处理 在含有线虫生长介质 (NGM) 的培养皿板上种植C. elegans,并以大肠杆菌OP50 作为食物来源传播。将蠕虫培养保持在 20 °C,如前所述8。 同步蠕虫执行定时卵子奠定52 和研究蠕虫在所需的阶段。在此协议中,对 L4 阶段蠕虫进行了分析。 …

Representative Results

分析液体介质中的C. elegans运动体活性可以轻松捕获线粒体疾病蠕虫模型的集成表型,这些模型在固体介质上可能不容易量化。ZebraLab 用于量化在 L4 幼虫阶段液体介质中相对于 WT 虫的成熟线粒体复合体 I 病气体-1(fc21)菌株的体活动。在1分钟内记录了5个蠕虫在一次液体下降中的活性,每个菌株总共记录了19个视频(技术复制),总共分析了每个菌株95个蠕虫。每个菌株获得了?…

Discussion

在这里,该研究总结了详细的信息和理由,研究C.elegans神经肌肉活动在不同的结果水平,包括蠕虫击打,运动,咽抽水,化疗。比较了16种不同的活动分析方法,从不同年龄和实验持续时间的单个蠕虫或蠕虫种群中线虫活动的相对吞吐量、优势和局限性进行。其中,突出了两种新型的适应和半自动分析的应用,以证明在L4幼虫发育阶段幼虫和在一个成熟的线粒体复合体I病C.elegans菌株?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢安东尼·罗斯纳博士为该项目的早期准备工作提供组织支持,并感谢艾琳·豪斯为协议分析做出贡献。这项工作由朱丽叶治疗FBXL4线粒体疾病研究基金、贾克逊·弗林特C12ORF65研究基金和国家卫生研究院(R01-GM120762,R01-GM120762-08S1,R35-GM134863和T32-NS007413)资助。内容完全由作者负责,不一定代表资助者或国家卫生研究院的官方观点。

Materials

C. elegans wild isolate  Caenorhabditis Genetics Center (CGC) N2 Bristol
Camera Olympus DP73
gas-1(fc-21) CGC CW152
Microscope slides ThermoFisher 4951PLUS
Nematode Growth Medium (NGM) Research Products International Corp. N81800-1000.0
OP50 Escherichia coli CGC Uracil auxotroph E. coli strain
Petri dishes (60 mm)  VWR international 25373-085
S. Basal VWR 5.85 g NaCl, 1 g K2 HPO4, 6 g KH2PO4, and 5 mg cholesterol, in 1 l H2O VWR 101175-162, 103467-156, EM1.09828.1000, 97061-660
Scanner EPSON V800
Stereomicroscope Olympus MVX10 microscope
96-well flat bottom  VWR international 29442-056
WormScan software Mathew et al. 45 S1 Standalone Java platform Software for automation of difference image of scanned plates
ZebraLab software ViewPoint Software for automated quantization and tracking of zebrafish behavior, designed by ViewPoint (http://www.viewpoint.fr/en/p/software/zebralab-zebrafish-behavior-screening) and here applied to C. elegans. This system is applicable for high-throughput behavioral analysis

Riferimenti

  1. Husson, S. J., Costa, W. S., Schmitt, C., Gottschalk, A. Keeping track of worm trackers. WormBook. , 1-17 (2013).
  2. Shaye, D. D., Greenwald, I. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One. 6 (5), 20085 (2011).
  3. van Ham, T. J., et al. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genetics. 4 (3), 1000027 (2008).
  4. Kim, W., Underwood, R. S., Greenwald, I., Shaye, D. D. OrthoList 2: A new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetica. 210 (2), 445-461 (2018).
  5. Dingley, S., et al. Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans. Mitochondrion. 10 (2), 125-136 (2010).
  6. Polyak, E., Zhang, Z., Falk, M. J. Molecular profiling of mitochondrial dysfunction in Caenorhabditis elegans. Methods in Molecular Biology. 837, 241-255 (2012).
  7. McCormick, E., Place, E., Falk, M. J. Molecular genetic testing for mitochondrial disease: from one generation to the next. Neurotherapeutics. 10 (2), 251-261 (2013).
  8. McCormack, S., et al. Pharmacologic targeting of sirtuin and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans. Mitochondrion. 22, 45-59 (2015).
  9. Polyak, E., et al. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Molecular Genetics and Metabolism. 123 (4), 449-462 (2018).
  10. Guha, S., et al. Pre-clinical evaluation of cysteamine bitartrate as a therapeutic agent for mitochondrial respiratory chain disease. Human Molecular Genetics. 28 (11), 1837-1852 (2019).
  11. Gorman, G. S., et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Annals of Neurology. 77 (5), 753-759 (2015).
  12. Mancuso, M., Orsucci, D., Filosto, M., Simoncini, C., Siciliano, G. Drugs and mitochondrial diseases: 40 queries and answers. Expert Opinion on Pharmacotherapy. 13 (4), 527-543 (2012).
  13. Gai, X., et al. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. American Journal of Human Genetics. 93 (3), 482-495 (2013).
  14. Dillin, A., et al. Rates of behavior and aging specified by mitochondrial function during development. Science. 298 (5602), 2398-2401 (2002).
  15. Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E., Schafer, W. R. A database of Caenorhabditis elegans behavioral phenotypes. Nature Methods. 10 (9), 877-879 (2013).
  16. Bargmann, C. I., Avery, L. Laser killing of cells in Caenorhabditis elegans. Methods in Cell Biology. 48, 225-250 (1995).
  17. Avery, L., Horvitz, H. R. Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. Journal of Experimental Zoology. 253 (3), 263-270 (1990).
  18. Chalfie, M., et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. Journal of Neuroscience. 5 (4), 956-964 (1985).
  19. Ghosh, R., Emmons, S. W. Episodic swimming behavior in the nematode C. elegans. Journal of Experimental Biology. 211 (23), 3703-3711 (2008).
  20. Rankin, C. H., Beck, C. D., Chiba, C. M. Caenorhabditis elegans: a new model system for the study of learning and memory. Behavioural Brain Research. 37 (1), 89-92 (1990).
  21. Avery, L. Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. Journal of Experimental Zoology. 175, 283-297 (1993).
  22. Ward, S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proceedings of the National Academy of Sciences of the United States of America. 70 (3), 817-821 (1973).
  23. Bargmann, C. I., Thomas, J. H., Horvitz, H. R. Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology. 55, 529-538 (1990).
  24. Anne, C. H. Behavior. WormBook: The Online Review of C. elegans Biology. 2005-2018, (2006).
  25. Biston, M. C., et al. An objective method to measure cell survival by computer-assisted image processing of numeric images of Petri dishes. Physics in Medicine & Biology. 48 (11), 1551-1563 (2003).
  26. Nussbaum-Krammer, C. I., Neto, M. F., Brielmann, R. M., Pedersen, J. S., Morimoto, R. I. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans. Journal of Visualized Experiments: JoVE. (95), e52321 (2015).
  27. Shi, W., Qin, J., Ye, N., Lin, B. Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab on a Chip. 8 (9), 1432-1435 (2008).
  28. Javer, A., et al. An open-source platform for analyzing and sharing worm-behavior data. Nature Methods. 15 (9), 645-646 (2018).
  29. Koopman, M., et al. Assessing motor-related phenotypes of Caenorhabditis elegans with the wide field-of-view nematode tracking platform. Nature Protocols. 15 (6), 2071-2106 (2020).
  30. Churgin, M. A., et al. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife. 6, 26652 (2017).
  31. Angstman, N. B., Kiessling, M. C., Frank, H. G., Schmitz, C. High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves. Frontiers in Behavioral Neuroscience. 9, 12 (2015).
  32. Rahman, M., et al. NemaLife chip: a micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Scientific Reports. 10 (1), 16190 (2020).
  33. Bianchi, J. I., Stockert, J. C., Buzzi, L. I., Blazquez-Castro, A., Simonetta, S. H. Reliable screening of dye phototoxicity by using a Caenorhabditis elegans fast bioassay. PLoS One. 10 (6), 0128898 (2015).
  34. Albertson, D. G., Thomson, J. N. The pharynx of Caenorhabditis elegans. Philososophical Transactions of the Royal Society of London. Series B, Biological Sciences. 275 (938), 299-325 (1976).
  35. Raizen, D. M., Avery, L. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron. 12 (3), 483-495 (1994).
  36. Avery, L., You, Y. J. C. elegans feeding. WormBook. , 1-23 (2012).
  37. Morck, C., Rauthan, M., Wagberg, F., Pilon, M. pha-2 encodes the C. elegans ortholog of the homeodomain protein HEX and is required for the formation of the pharyngeal isthmus. Biologia dello sviluppo. 272 (2), 403-418 (2004).
  38. Song, B. M., Avery, L. Serotonin activates overall feeding by activating two separate neural pathways in Caenorhabditis elegans. TheJournal of Neuroscience. 32 (6), 1920-1931 (2012).
  39. Avery, L., Raizen, D., Lockery, S. Electrophysiological methods. Methods in Cell Biology. 48, 251-269 (1995).
  40. Kopito, R. B., Levine, E. Durable spatiotemporal surveillance of Caenorhabditis elegans response to environmental cues. Lab in a Chip. 14 (4), 764-770 (2014).
  41. Lee, K. S., et al. Serotonin-dependent kinetics of feeding bursts underlie a graded response to food availability in C. elegans. Nature Communications. 8, 14221 (2017).
  42. Brinkmann, V., Ale-Agha, N., Haendeler, J., Ventura, N. The Aryl Hydrocarbon Receptor (AhR) in the aging process: Another puzzling role for this highly conserved transcription factor. Frontiers in Physiology. 10, 1561 (2019).
  43. Huang, C., et al. Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. eLife. 8, 43059 (2019).
  44. Zhu, B., et al. Functional analysis of epilepsy-associated variants in STXBP1/Munc18-1 using humanized Caenorhabditis elegans. Epilepsia. 61 (4), 810-821 (2020).
  45. Weeks, J. C., Robinson, K. J., Lockery, S. R., Roberts, W. M. Anthelmintic drug actions in resistant and susceptible C. elegans revealed by electrophysiological recordings in a multichannel microfluidic device. International Journal of Parasitology. Drugs and Drug Resistance. 8 (3), 607-628 (2018).
  46. Haroon, S., et al. Multiple molecular mechanisms rescue mtDNA disease in C. elegans. Cell Reports. 22 (12), 3115-3125 (2018).
  47. Swierczek, N. A., Giles, A. C., Rankin, C. H., Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nature Methods. 8 (7), 592-598 (2011).
  48. Mathew, M. D., Mathew, N. D., Ebert, P. R. WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS One. 7 (3), 33483 (2012).
  49. Mathew, M. D., et al. Using C. elegans forward and reverse genetics to identify new compounds with anthelmintic activity. PLoS Neglected Tropical Diseases. 10 (10), 0005058 (2016).
  50. Kayser, E. B., Morgan, P. G., Hoppel, C. L., Sedensky, M. M. Mitochondrial expression and function of GAS-1 in Caenorhabditis elegans. Journal Biological Chemistry. 276 (23), 20551-20558 (2001).
  51. Falk, M. J., Kayser, E. B., Morgan, P. G., Sedensky, M. M. Mitochondrial complex I function modulates volatile anesthetic sensitivity in C. elegans. Current Biology. 16 (16), 1641-1645 (2006).
  52. Kwon, Y. J., Guha, S., Tuluc, F., Falk, M. J. High-throughput BioSorter quantification of relative mitochondrial content and membrane potential in living Caenorhabditis elegans. Mitochondrion. 40, 42-50 (2018).
  53. Hirsh, D., Oppenheim, D., Klass, M. Development of the reproductive system of Caenorhabditis elegans. Biologia dello sviluppo. 49 (1), 200-219 (1976).
  54. Steele, W. B., Mole, R. A., Brooks, B. W. Experimental protocol for examining behavioral response profiles in larval fish: Application to the Neuro-stimulant caffeine. Journal of Visualized Experiments: JoVE. (137), e57938 (2018).
  55. Carlsson, G., Blomberg, M., Pohl, J., Orn, S. Swimming activity in zebrafish larvae exposed to veterinary antiparasitic pharmaceuticals. Environmental Toxicology and Pharmacology. 63, 74-77 (2018).
  56. Yang, X., et al. High-throughput screening in larval zebrafish identifies novel potent sedative-hypnotics. Anesthesiology. 129 (3), 459-476 (2018).
check_url/it/62244?article_type=t

Play Video

Citazione di questo articolo
Lavorato, M., Mathew, N. D., Shah, N., Nakamaru-Ogiso, E., Falk, M. J. Comparative Analysis of Experimental Methods to Quantify Animal Activity in Caenorhabditis elegans Models of Mitochondrial Disease. J. Vis. Exp. (170), e62244, doi:10.3791/62244 (2021).

View Video