Summary

Solución Blow Spinning de fibras nanocompuestas poliméricas para equipos de protección personal

Published: March 18, 2021
doi:

Summary

El objetivo principal de este estudio es describir un protocolo para preparar esteras de fibra polimérica con morfología consistente a través del hilado por soplado en solución (SBS). Nuestro objetivo es utilizar SBS para desarrollar nanocompuestos de fibra polimérica novedosos, sintonizables y flexibles para diversas aplicaciones, incluidos materiales de protección, mediante la incorporación de nanopartículas en una matriz de polímero-elastómero.

Abstract

Los sistemas de blindaje protectores livianos suelen consistir en fibras poliméricas de alto módulo (>109 MPa) y de alta resistencia que se mantienen en su lugar con un material de resina elástica (aglutinante) para formar un laminado unidireccional no tejido. Si bien los esfuerzos significativos se han centrado en mejorar las propiedades mecánicas de las fibras de alta resistencia, se ha realizado poco trabajo para mejorar las propiedades de los materiales aglutinantes. Para mejorar el rendimiento de estos aglutinantes de polímeros elastoméricos, se utilizó un proceso de fabricación relativamente nuevo y simple, conocido como hilado por soplado de solución. Esta técnica es capaz de producir láminas o redes de fibras con diámetros medios que van desde la nanoescala hasta la microescala. Para lograr esto, se ha diseñado y construido en el laboratorio un aparato de hilatura por soplado en solución (SBS) para fabricar esteras de fibra no tejida a partir de soluciones de elastómero polimérico.

En este estudio, se utilizó un material aglutinante de uso común, un copolímero de bloque estireno-butadieno-estireno disuelto en tetrahidrofurano, para producir esteras de fibra nanocompuestas mediante la adición de nanopartículas metálicas (NP), como NP de óxido de hierro, que se encapsularon con aceite de silicio y, por lo tanto, se incorporaron en las fibras formadas a través del proceso SBS. El protocolo descrito en este trabajo discutirá los efectos de los diversos parámetros críticos involucrados en el proceso SBS, incluida la masa molar del polímero, la selección del solvente termodinámicamente apropiado, la concentración del polímero en solución y la presión del gas portador para ayudar a otros a realizar experimentos similares, así como proporcionar orientación para optimizar la configuración de la configuración experimental. La integridad estructural y la morfología de las esteras de fibra no tejida resultantes se examinaron mediante microscopía electrónica de barrido (SEM) y análisis de rayos X elementales mediante espectroscopia de rayos X de dispersión de energía (EDS). El objetivo de este estudio es evaluar los efectos de los diversos parámetros experimentales y selecciones de materiales para optimizar la estructura y morfología de las esteras de fibra SBS.

Introduction

Muchos sistemas de blindaje ligeros, balísticos y protectores se construyen actualmente utilizando fibras poliméricas de alto módulo y alta resistencia, como fibras de polietileno orientadas de masa molar ultra alta o aramidas, que proporcionan una resistencia balística excepcional 1,2. Estas fibras se utilizan en combinación con un material de resina elástica (aglutinante) que puede penetrar hasta el nivel del filamento y asegurar las fibras en una configuración de 0 ° / 90 ° para formar un laminado unidireccional no tejido. El porcentaje de resina de elastómero polimérico (aglutinante) no debe exceder el 13% del peso total del laminado unidireccional para mantener la integridad estructural y las propiedades antibalísticas de la estructura laminada 3,4. El aglutinante es un componente muy importante de la armadura, ya que mantiene las fibras de alta resistencia correctamente orientadas y empaquetadas firmemente dentro de cada capa laminada3. Los materiales de elastómero comúnmente utilizados como aglutinantes en aplicaciones de armadura corporal tienen un módulo de tracción muy bajo (por ejemplo, ~ 17.2 MPa a ~ 23 ° C), baja temperatura de transición vítrea (preferiblemente por debajo de -50 ° C), muy alta elongación a la rotura (tan alta como 300%) y deben demostrar excelentes propiedades adhesivas5.

Para mejorar el rendimiento de estos elastómeros poliméricos, se realizó SBS para crear materiales de elastómero fibroso que se pueden usar como aglutinantes en aplicaciones de armadura corporal. SBS es una técnica relativamente nueva y versátil que permite el uso de diferentes sistemas de polímeros / solventes y la creación de diferentes productos finales 6,7,8,9,10,11,12,13. Este proceso simple implica la deposición rápida (10 veces la velocidad de electrohilado) de fibras conformadas sobre sustratos planos y no planos para fabricar láminas o redes de fibras que abarcan escalas de longitud nano y micro 14,15,16,17,18. Los materiales SBS tienen numerosas aplicaciones en productos médicos, filtros de aire, equipos de protección, sensores, electrónica óptica y catalizadores14,19,20. El desarrollo de fibras de diámetro pequeño puede aumentar drásticamente la relación entre el área de superficie y el volumen, lo cual es muy importante para varias aplicaciones, especialmente en el campo de los equipos de protección personal. El diámetro y la morfología de las fibras generadas por SBS dependen de la masa molar del polímero, la concentración del polímero en la solución, la viscosidad de la solución, el caudal de la solución polimérica, la presión del gas, la distancia de trabajo y el diámetro de la boquilla de pulverización14,15,17.

Una característica importante del aparato SBS es la boquilla de pulverización que consiste en una boquilla interior y una boquilla exterior concéntrica. El polímero disuelto en un disolvente volátil se bombea a través de la boquilla interior mientras que un gas presurizado fluye a través de la boquilla exterior. El gas de alta velocidad que sale de la boquilla exterior induce el cizallamiento de la solución de polímero que fluye a través de la boquilla interior. Esto obliga a la solución a formar una forma cónica al salir de la boquilla de pulverización. Cuando se supera la tensión superficial en la punta del cono, se expulsa una fina corriente de solución polimérica y el disolvente se evapora rápidamente, lo que hace que las hebras de polímero se unan y se depositen como fibras de polímero. La formación de una estructura fibrosa, a medida que el disolvente se evapora, depende en gran medida de la masa molar del polímero y de la concentración de la solución. Las fibras se forman por entrelazamiento de cadena, cuando las cadenas de polímeros en solución comienzan a superponerse a una concentración conocida como concentración crítica de superposición (c *). Por lo tanto, es necesario trabajar con soluciones poliméricas por encima de la c* del sistema polímero/disolvente seleccionado. Además, una estrategia fácil para lograr esto es elegir polímeros con masa molar relativamente alta. Los polímeros con mayor masa molar tienen mayores tiempos de relajación del polímero, lo que está directamente relacionado con un aumento en la formación de estructuras fibrosas, como se describe en la literatura21. Como muchos de los parámetros utilizados en SBS están fuertemente correlacionados, el objetivo de este trabajo es proporcionar orientación para desarrollar nanocompuestos de fibra polimérica sintonizables y flexibles para ser utilizados como alternativas para los materiales aglutinantes típicos que se encuentran en aplicaciones de armadura corporal mediante la incorporación de nanopartículas en la matriz fibrosa de polímero-elastómero.

Protocol

NOTA: Los detalles relacionados con el equipo, la instrumentación y los productos químicos utilizados en esta sección se pueden encontrar en la Tabla de materiales. Todo este protocolo debe ser revisado y aprobado primero por el departamento / personal de seguridad institucional para garantizar que se cumplan los procedimientos y procesos específicos de la institución. 1. Preparación de la solución polimérica utilizando el disolvente apropiado <p class="jove_content"…

Representative Results

En este estudio, se sintetizaron esteras de fibras no tejidas que consisten en fibras de poli (estireno-butadieno-estireno) en la escala nano y micro, con y sin la presencia de NP de óxido de hierro. Para formar fibras, los parámetros SBS deben seleccionarse cuidadosamente para el sistema de polímero/solvente utilizado. La masa molar del polímero disuelto y la concentración de la solución son críticas para controlar la morfología de las estructuras producidas por el proceso SBS. En este estudio, se utilizó un co…

Discussion

El método descrito en este documento proporciona un protocolo para producir esteras de fibra nanocompuesta de elastómero polimérico a través de una técnica relativamente nueva conocida como hilado por soplado en solución. Esta técnica permite la fabricación de fibras en la nanoescala y tiene varias ventajas sobre otras técnicas bien establecidas, como el proceso de electrohilado, ya que puede llevarse a cabo bajo presión atmosférica y temperatura ambiente27. Además, el SBS no es altame…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Los autores desean reconocer al Sr. Dwight D. Barry por sus importantes contribuciones para la fabricación del aparato de hilado de soplado de solución. Zois Tsinas y Ran Tao desean agradecer la financiación del Instituto Nacional de Estándares y Tecnología bajo los premios # 70NANB20H007 y # 70NANB15H112, respectivamente.

Materials

45 MM Toolmaker Vise Tormach Inc. 32547 To secure substrate onto the collector
ARES-G2 Rheometer TA Instruments 401000.501 Rheometer
Branson Ultrasonics M Series – Ultrasonic Cleaning Bath Fisher Scientific 15-336-100 To disperse nanoparticles
Cadence Science Micro-Mate Interchangeable Syringe Fisher Scientific 14-825-2A Glass Syringe 5mL in 1/5mL, Luer Lock Tip
Chemical hood Any company
Corning – Disposable Pasteur Glass Pipette Sigma Aldrich CLS7095D5X-200EA Non-Sterile
DWK Life Sciences Wheaton – Glass Scintillation Vial Fisher Scientific 03-341-25G 20 mL with cap
FEI Quanta 200 Scanning Electron Microscope (SEM) FEI For imaging samples
Iron Oxide Nanopowder/Nanoparticles US Research Nanomaterials, inc. US3320 Fe3O4, 98%, 20-3- nm, Silicon oil Coated
KD Scientific Legato 100 Single-Syringe Pump Sigma Aldrich Z401358-1EA Single syringe infusion pump
Master Airbrush – Model S68 TCP Global MAS S68 Nozzle/needle diameter: 0.35 mm
Mettler Toledo AB265-S/FACT Scale Cole-Parmer Scientific EW-11333-14 For weighing polymer and  Nanoparticles
N2 Gas Regulator Any company
Nanoenclosure Any company
Optical Microscopy Glass Slides Fisher Scientific 12-550-A3 Used as a substrate for fiber mat deposition
OSP Slotted Bob, 33 mm TA Instruments 402796.902 Bob, upper geometry
OSP Slotted Double Gap Cup, 34 mm TA Instruments 402782.901 Double wall cup, lower geometry
Oxford BenchMate Digital Vortex Mixer Pipette VM-D Rated up to 4,200 rpm, for mixing solutions
Oxford Benchmate Tube Roller Pipette OTR-24DR Sample mixer/rotator
Polystyrene-block-polybutadiene-block-polystyrene Sigma Aldrich 432490-1KG styrene 30 wt. %, Mw ~ 185,000 g/mol
SEM Pin Stub Specimen Mount Ted Pella Inc. 16119 18 mm diameter x 8 mm height
Spatula VWR 82027-532 To load test materials
Tetrahydrofuran (THF) Fisher Scientific T425-1 solvent, HPLC grade
TRIOS TA Instruments v4.3.1.39215 Rheometer software

Riferimenti

  1. Lee, B. L., et al. Penetration failure mechanisms of armor-grade fiber composites under impact. Journal of Composite Materials. 35 (18), 1605-1633 (2001).
  2. Prevorsek, D. C., Kwon, Y. D., Chin, H. B. Analysis of the temperature rise in the projectile and extended chain polyethylene fiber composite armor during ballistic impact and penetration. Polymer Engineering and Science. 34 (2), 141-152 (1994).
  3. Park, A. D., Park, D., No Park, A. J. . U.S. Patent. , (2006).
  4. No Park, A. D. . U.S. Patent. , (1995).
  5. Harpell, G. A., Prevorsek, D. C., Li, H. L. Flexible multi-layered armor. Patent No. WO/1989. , (1989).
  6. Cena, C., et al. BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceramics International. 43 (10), 7663-7667 (2017).
  7. Miller, C. L., Stafford, G., Sigmon, N., Gilmore, J. A. Conductive nonwoven carbon nanotube-PLA composite nanofibers towards wound sensors via solution blow spinning. IEEE Transactions on Nanobioscience. 18 (2), 244-247 (2019).
  8. Iorio, M., et al. Conformational changes on PMMA induced by the presence of TiO 2 nanoparticles and the processing by Solution Blow Spinning. Colloid and Polymer Science. 296 (3), 461-469 (2018).
  9. Martínez-Sanz, M., et al. Antimicrobial poly (lactic acid)-based nanofibres developed by solution blow spinning. Journal of Nanoscience and Nanotechnology. 15 (1), 616-627 (2015).
  10. Wang, H., et al. Highly flexible indium tin oxide nanofiber transparent electrodes by blow spinning. ACS Applied Materials and Interfaces. 8 (48), 32661-32666 (2016).
  11. Greenhalgh, R. D., et al. Hybrid sol-gel inorganic/gelatin porous fibres via solution blow spinning. Journal of Materials Science. 52 (15), 9066-9081 (2017).
  12. Gonzalez-Abrego, M., et al. Mesoporous titania nanofibers by solution blow spinning. Journal of Sol-Gel Science and Technology. 81 (2), 468-474 (2017).
  13. Oliveira, J. E., Zucolotto, V., Mattoso, L. H., Medeiros, E. S. Multi-walled carbon nanotubes and poly (lactic acid) nanocomposite fibrous membranes prepared by solution blow spinning. Journal of Nanoscience and Nanotechnology. 12 (3), 2733-2741 (2012).
  14. Medeiros, E. S., Glenn, G. M., Klamczynski, A. P., Orts, W. J., Mattoso, L. H. Solution blow spinning: A new method to produce micro-and nanofibers from polymer solutions. Journal of Applied Polymer Science. 113 (4), 2322-2330 (2009).
  15. Vasireddi, R., et al. Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle. Scientific Reports. 9 (1), 1-10 (2019).
  16. Tutak, W., et al. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials. 34 (10), 2389-2398 (2013).
  17. Daristotle, J. L., Behrens, A. M., Sandler, A. D., Kofinas, P. A review of the fundamental principles and applications of solution blow spinning. ACS Applied Materials and Interfaces. 8 (51), 34951-34963 (2016).
  18. Hofmann, E., et al. Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter control. Lab on a Chip. 18 (15), 2225-2234 (2018).
  19. Behrens, A. M., et al. In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Letters. 3 (3), 249-254 (2014).
  20. Vural, M., Behrens, A. M., Ayyub, O. B., Ayoub, J. J., Kofinas, P. Sprayable elastic conductors based on block copolymer silver nanoparticle composites. ACS Nano. 9 (1), 336-344 (2015).
  21. Srinivasan, S., Chhatre, S. S., Mabry, J. M., Cohen, R. E., McKinley, G. H. Solution spraying of poly (methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer. 52 (14), 3209-3218 (2011).
  22. Flory, P. J. . Principles of polymer chemistry. , (1953).
  23. Palangetic, L., et al. Dispersity and spinnability: Why highly polydisperse polymer solutions are desirable for electrospinning. Polymer. 55 (19), 4920-4931 (2014).
  24. Ying, Q., Chu, B. Overlap concentration of macromolecules in solution. Macromolecules. 20 (2), 362-366 (1987).
  25. Haro-Pérez, C., Andablo-Reyes, E., Díaz-Leyva, P., Arauz-Lara, J. L. Microrheology of viscoelastic fluids containing light-scattering inclusions. Physical Review E. 75 (4), 041505 (2007).
  26. Thiele, J., et al. Early development drug formulation on a chip: Fabrication of nanoparticles using a microfluidic spray dryer. Lab on a Chip. 11 (14), 2362-2368 (2011).
  27. Zhao, J., Xiong, W., Yu, N., Yang, X. Continuous jetting of alginate microfiber in atmosphere based on a microfluidic chip. Micromachines. 8 (1), 8 (2017).
  28. Jun, Y., Kang, E., Chae, S., Lee, S. H. Microfluidic spinning of micro-and nano-scale fibers for tissue engineering. Lab on a Chip. 14 (13), 2145-2160 (2014).
  29. Weng, B., Xu, F., Salinas, A., Lozano, K. Mass production of carbon nanotube reinforced poly (methyl methacrylate) nonwoven nanofiber mats. Carbon. 75, 217-226 (2014).
  30. Barton, A. F. Solubility parameters. Chemical Reviews. 75 (6), 731-753 (1975).
check_url/it/62283?article_type=t

Play Video

Citazione di questo articolo
Tsinas, Z., Tao, R., Forster, A. L. Solution Blow Spinning of Polymeric Nano-Composite Fibers for Personal Protective Equipment. J. Vis. Exp. (169), e62283, doi:10.3791/62283 (2021).

View Video