Summary

用于中风后患者步态分析和评估的运动双任务

Published: March 11, 2021
doi:

Summary

本文提出了一种专门用于运动控制缺陷中风患者双运动任务步态分析的方案。

Abstract

本研究招募了18名中风患者,涉及认知和行走能力的评估以及多任务步态分析。多任务步态分析包括单个步行任务(任务 0)、简单运动双任务(持水,任务 1)和复杂运动双任务(穿越障碍物,任务 2)。穿越障碍物的任务被认为等同于简单的步行任务和复杂的运动任务的组合,因为它涉及更多的神经系统、骨骼运动和认知资源。为了消除脑卒中患者步态分析结果的异质性,计算了各种运动学参数的双任务步态成本值。在近端关节角度方面观察到主要差异,特别是在躯干、骨盆和髋关节的角度方面,双运动任务明显大于单步行任务。本研究方案旨在通过对双运动行走任务的分析,为步态功能的临床诊断和运动控制缺陷脑卒中患者的运动控制的深入研究提供依据。

Introduction

恢复独立行走功能是脑卒中后患者参与社区生活的必备条件之一1。行走能力的恢复不仅需要感知和认知系统的相互作用,还需要运动控制2,3,4此外,在现实的社区生活中,人们需要更高的能力,例如同时执行两项或多项任务(例如,拿着物体行走或越过障碍物)。因此,研究开始关注双重任务对步态表现的干扰5,6。以前的双任务研究主要针对老年和认知障碍患者,因为中风患者的运动表现困难和异质性;卒中患者的步态功能主要通过单个步行任务7,8,9进行评估。然而,双任务步态分析,特别是与运动控制相关的运动双任务分析需要进一步研究。

本研究介绍了一种双运动任务步态分析和评估方法。该方案不仅包括对中风患者行走能力的临床评估,而且还侧重于两个双运动任务:保持水和行走任务(简单的双运动任务)和穿越障碍物行走任务(复杂的双运动任务)。本研究旨在探讨双运动任务对脑卒中患者步态的影响,并利用双任务参数的双任务步态成本(DTC)值10 (单任务与双任务之间的差异)来排除脑卒中患者的异质性。实验任务的设计促进了脑卒中患者运动控制功能的深入探讨,为脑卒中患者步态功能的临床诊断和评价提供了新的思路。

Protocol

注:临床研究经广州医科大学附属第五医院医学伦理协会批准(编号:KY01-2019-02-27),并已在中国临床试验注册中心注册(编号:KY01-2019-02-27)。ChiCTR1800017487,标题为“中风后步态控制和运动认知的多种模态任务”)。 1. 招聘 招募具有以下纳入标准的脑卒中患者:符合中华医学会神经分会脑血管疾病诊断标准的患者(2005);通过计算机断层扫描或磁共振成像确诊脑梗…

Representative Results

本研究招募了18名脑卒中后偏瘫患者。参与者的平均年龄为51.61岁±12.97岁;都是男性。左右偏瘫比例为10/8;布伦斯特罗姆阶段的平均分期为4.50±0.76。MMSE和MoCA的平均值分别为26.56±1.67和20.06±2.27。其他人口统计学特征(包括脑卒中类型和发病时间)见表1。对于步态双重任务(任务1和任务2)的原始数据,时空参数没有统计学差异(表2)。然而,在关节角参数中,任务 2 中的双边躯干旋转?…

Discussion

本研究描述了一种临床评估运动控制缺陷中风患者双运动任务步态分析的方案。该协议的设计基于两个要点。首先,以往的研究大多使用单一的步行任务来评估脑卒中患者的步态功能,关于运动控制的相关讨论不充分,特别是因为复杂运动的原理很少涉及22,23。因此,在这项研究中,作者除了以单步行任务为基准外,主要关注运动表现和行走两个双重任…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢Anniwaer Yilifate校对我们的手稿。本研究由国家自然科学基金第81902281号和第82072544号基金、广州市卫生和计划生育委员会通用指导项目(批准号:20191A011091和20211A011106)、广州重点实验室基金(第201905010004号)和广东省基础与应用基础研究基金(批准号:2020A1515010578)资助。

Materials

BTS Smart DX system Bioengineering Technology System, Milan, Italy 1 Temporospatial data collection
BTS SMART-Clinic software Bioengineering Technology System, Milan, Italy 2 Data processing
SPSS software (version 25.0) IBM Crop., Armonk, NY, USA Statistical analysis

Riferimenti

  1. Cho, K. H., Kim, M. K., Lee, H. -. J., Lee, W. H. Virtual reality training with cognitive load improves walking function in chronic stroke patients. The Tohoku Journal of Experimental Medicine. 236 (4), 273-280 (2015).
  2. Delavaran, H., et al. Cognitive function in stroke survivors: A 10-year follow-up study. Acta Neurologica Scandinavica. 136 (3), 187-194 (2017).
  3. Zhang, W., et al. The effects of transcranial direct current stimulation versus electroacupuncture on working memory in healthy subjects. Journal of Alternative and Complementary Medicine. 25 (6), 637-642 (2019).
  4. Pin-Barre, C., Laurin, J. Physical exercise as a diagnostic, rehabilitation, and preventive tool: influence on neuroplasticity and motor recovery after stroke. Neural Plasticity. 2015, 608581 (2015).
  5. Auvinet, B., Touzard, C., Montestruc, F., Delafond, A., Goeb, V. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes. Journal of Neuroengineering and Rehabilitation. 14 (1), 7 (2017).
  6. Tramontano, M., et al. Maintaining gait stability during dual walking task: effects of age and neurological disorders. European Journal of Physical and Rehabilitation Medicine. 53 (1), 7-13 (2017).
  7. Sakurai, R., Bartha, R., Montero-Odasso, M. Entorhinal cortex volume is associated with dual-task gait cost among older adults with MCI: results from the gait and brain study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 74 (5), 698-704 (2019).
  8. Howcroft, J., Lemaire, E. D., Kofman, J., McIlroy, W. E. Dual-task elderly gait of prospective fallers and non-fallers: a wearable-sensor based analysis. Sensors. 18 (4), 1275 (2018).
  9. Fernandez-Gonzalez, P., Molina-Rueda, F., Cuesta-Gomez, A., Carratala-Tejada, M., Miangolarra-Page, J. C. Instrumental gait analysis in stroke patients. Revista de Neurologia. 63 (10), 433-439 (2016).
  10. Montero-Odasso, M. M., et al. Association of dual-task gait with incident dementia in mild cognitive impairment: results from the gait and brain study. JAMA Neurology. 74 (7), 857-865 (2017).
  11. Bohannon, R. W., Smith, M. B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Physical Therapy. 67 (2), 206-207 (1987).
  12. Llamas-Velasco, S., Llorente-Ayuso, L., Contador, I., Bermejo-Pareja, F. Spanish versions of the Minimental State Examination (MMSE). Questions for their use in clinical practice. Revista de Neurologia. 61 (8), 363-371 (2015).
  13. Yoelin, A. B., Saunders, N. W. Score disparity between the MMSE and the SLUMS. American Journal of Alzheimer’s Disease and Other Dementias. 32 (5), 282-288 (2017).
  14. Julayanont, P., Brousseau, M., Chertkow, H., Phillips, N., Nasreddine, Z. S. Montreal Cognitive Assessment Memory Index Score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer’s disease. Journal of the American Geriatrics Society. 62 (4), 679-684 (2014).
  15. Carson, N., Leach, L., Murphy, K. J. A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. International Journal of Geriatric Psychiatry. 33 (2), 379-388 (2018).
  16. Peters, D. M., Fritz, S. L., Krotish, D. E. Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. Journal of Geriatric Physical Therapy. 36 (1), 24-30 (2013).
  17. Podsiadlo, D., Richardson, S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society. 39 (2), 142-148 (1991).
  18. Lin, Q., et al. Quantitative static and dynamic assessment of balance control in stroke patients. Journal of Visualized Experiments: JoVE. (159), e60884 (2020).
  19. Davis, R. B., Ounpuu, S., Tyburski, D., Gage, J. R. A gait analysis data collection and reduction technique. Human Movement Science. 10 (5), 575-587 (1991).
  20. Liang, J., et al. The lower body positive pressure treadmill for knee osteoarthritis rehabilitation. Journal of Visualized Experiments: JoVE. (149), e59829 (2019).
  21. Liang, J., et al. The effect of anti-gravity treadmill training for knee osteoarthritis rehabilitation on joint pain, gait, and EMG: Case report. Medicine (Baltimore). 98 (18), 15386 (2019).
  22. Balaban, B., Tok, F. Gait disturbances in patients with stroke. PM & R: The Journal of Injury, Function, and Rehabilitation. 6 (7), 635-642 (2014).
  23. Li, M., Xu, G., Xie, J., Chen, C. A review: Motor rehabilitation after stroke with control based on human intent. Proceedings of the Institute of Mechanical Engineers. Part H, Journal of Engineering in Medicine. 232 (4), 344-360 (2018).
  24. Bloem, B. R., Valkenburg, V. V., Slabbekoorn, M., Willemsen, M. D. The Multiple Tasks Test: development and normal strategies. Gait Posture. 14 (3), 191-202 (2001).
  25. Montero-Odasso, M., Muir, S. W., Speechley, M. Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Archives of Physical Medicine and Rehabilitation. 93 (2), 293-299 (2012).
  26. Selvaraj, U. M., Poinsatte, K., Torres, V., Ortega, S. B., Stowe, A. M. Heterogeneity of B cell functions in stroke-related risk, prevention, injury, and repair. Neurotherapeutics. 13 (4), 729-747 (2016).

Play Video

Citazione di questo articolo
Ou, H., Lang, S., Zheng, Y., Huang, D., Gao, S., Zheng, M., Zhao, B., Yiming, Z., Qiu, Y., Lin, Q., Liang, J. Motor Dual-Tasks for Gait Analysis and Evaluation in Post-Stroke Patients. J. Vis. Exp. (169), e62302, doi:10.3791/62302 (2021).

View Video