Summary

评估人体骨骼肌微组织骨骼肌健康的功能指标

Published: February 18, 2021
doi:

Summary

本手稿描述了一种详细的方案,用于生成3D人骨骼肌微系统和微创下游功能原位测定阵列,包括收缩力和钙处理分析。

Abstract

骨骼肌的三维(3D)体外模型是生物医学研究的宝贵进步,因为它们提供了以可扩展格式研究骨骼肌改造和功能的机会,该格式适合实验操作。3D肌肉培养系统是可取的,因为它们使科学家能够在人类细胞的背景下离体研究骨骼肌。3D体外模型密切模仿成人骨骼肌天然组织结构的各个方面。然而,它们的普遍应用受到平台可用性的限制,这些平台易于制造,成本高,用户友好,并且产生相对大量的人体骨骼肌组织。此外,由于骨骼肌在许多疾病状态下起着重要的功能作用,随着时间的推移会受损,因此当微创钙瞬时和收缩力测量可以直接在平台本身内进行微创钙瞬时和收缩力测量时,微组织研究的实验平台是最实用的。在该协议中,描述了称为”MyoTACTIC”的96孔平台的制造,以及大规模生产3D人体骨骼肌微组织(hMMTs)。此外,还报告了微创电刺激应用的方法,该方法能够随着时间的推移重复测量每个微量组织的骨骼肌力和钙处理。

Introduction

骨骼肌是人体最丰富的组织之一,支持关键的身体功能,如运动,热稳态和新陈代谢1。从历史上看,动物模型和二维(2D)细胞培养系统已被用于研究生物过程和疾病发病机制,以及用于测试药物治疗骨骼肌疾病的药理化合物2,3。虽然动物模型大大提高了我们对健康和疾病骨骼肌的了解,但它们的转化影响受到高成本,伦理考虑和种间差异的阻碍2,4。在转向基于人类细胞的系统来研究骨骼肌时,2D细胞培养系统由于其简单性而具有优势。但是,存在限制。这种格式通常无法概括体内自然发生的细胞 – 细胞和细胞外基质相互作用5,6。在过去的几年中,三维(3D)骨骼肌模型已成为整个动物模型和传统2D培养系统的强大替代品,因为它允许对离体7,8的生理和病理学相关过程进行建模事实上,大量研究报告了以生物人工3D培养格式1模拟人体骨骼肌的策略。许多这些研究的一个局限性是,在从培养平台上去除肌肉组织并附着在力传感器上之后,主动力是定量的,这是破坏性的,因此,仅限于作为终点测定9,10,11,12,13,14,15,16,17,18 19,2021.其他人已经设计了允许非侵入性方法测量主动力的培养系统,但并非所有方法都适合高内涵分子测试应用7,8,9,10,14,18,22,23,24,25,26,27,28 29.

该协议描述了在骨骼肌(Myo)微Tissue Array deviCe中制造人类肌肉微组织(hMMTs)的详细方法,以研究forCe(MyoTACTIC)平台;支持批量生产3D骨骼肌微系统的96孔板设备30。MyoTACTIC板制造方法能够在单个铸造步骤中生成96孔聚二甲基硅氧烷(PDMS)培养板和所有相应的孔特征,因此每个孔需要相对较少的细胞来形成微组织。在MyoTACTIC中形成的微组织包含对齐,条纹和多核的肌管,这些肌管可以从设备的孔到孔重复,并且在成熟时可以对原位的化学和电刺激做出反应30。本文概述并讨论了从聚氨酯(PU)复制品制造PDMS肌定向培养板装置的技术,实现永生化人肌原祖细胞以制造hMMT的优化方法,以及工程hMMT力产生和钙处理特性的功能评估。

Protocol

1. PDMS肌定向板制造 注:PDMS肌定向板制造需要PU负模,其制造方式可如前所述30。用于 MyoTACTIC 板设计的计算机辅助设计 (CAD) SolidWorks 文件已在 GitHub (https://github.com/gilbertlabcode/MyoTACTIC-SolidWork-CAD-file) 上提供。 使用有机硅弹性体试剂盒中的组分,以1:15的比例在一次性塑料杯中以单体与固化剂的比例制备〜110g PDMS聚合物溶液。使用5 mL一次性血清移…

Representative Results

本文描述的方法是从PU模具中铸造基于96孔PDMS的MyoTACTIC培养平台,以制造hMMT复制组织阵列,并分析培养装置内hMMT功能的两个方面 – 力生成和钙处理。图1提供了在hMMT播种前制备MyoTACTIC培养孔的示意图。PDMS是一种广泛使用的有机硅基聚合物,可以很容易地模塑成复杂的器件32。基于PDMS的协议旨在从制造的负PU模具30中铸造无限数量的96孔培养…

Discussion

本手稿描述了制造和分析3D hMMT培养模型的方法,该模型可应用于基础肌肉生物学,疾病建模或候选分子测试的研究。MyoTACTIC平台成本友好,易于制造,并且需要相对较少的细胞来产生骨骼肌微组织。在MyoTACTIC培养平台内形成的hMMTs由对齐,多核和横纹肌管组成,并通过启动触发收缩的钙瞬变来响应电刺激(图2,图3,图4)。先前?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢Mohammad Afshar,Haben Abraha,Mohsen Afshar-Bakooshli和Sadegh Davoudi为MyoTACTIC培养平台的发明做出了贡献,并建立了本文所述的制造和分析方法。HL获得了自然科学与工程研究委员会(NSERC)器官芯片工程和创业奖学金培训计划和多伦多大学野猫研究生奖学金的资助。PMG是加拿大内源性修复研究主席,并获得了安大略省再生医学研究所,干细胞网络和加拿大第一研究卓越计划Medicine by Design对这项研究的支持。逻辑示意图是使用 BioRender.com 创建的。

Materials

0.9% Saline Solution, Sterile House Brand 1010 10 mL aliquots of the solution are made and stored at 4°C
25G Needle BD, Medstore, University of Toronto 2548-CABD305127
6-Aminocaproic Acid, ≥99% (titration), Powder Sigma – Aldrich A2504-100G A 50 mg / mL stock solution is generated by dissolving 5 mg of 6-aminocaproic acid powder in 100 mL of autoclaved, distilled water. The solution is vaccum filtered and 10 mL aliquots are stored at 4°C
6.35 mm ID Tubing VWR 60985-528
AB1167 Myoblast Cell Line Institut de Myologie (Paris, France)
Arbitrary Waveform Generator Rigol DG1022Z
Basement Membrane Extract (Geltrex) Thermo Fisher Scientific A14132-02 Stored as aliquots of 50 µL or 100 µL at -80°C
Benchtop Vacuum Chamber Sigma – Aldrich D2672
BNC to Aligator Clip Cable Ordered from Amazon
Culture Plastics Sarstedt Includes culture plates, serological pipettes, etc
Dimethyl Sulfoxide Sigma – Aldrich D8418-250ML
DPBS, Powder, No Calcium, No Magnesium Thermo Fisher Scientific 21600069
Dulbecco's Modified Eagle Medium (DMEM) (1X) Gibco 11995-065 This is a high glucose DMEM with L-glutamine and sodium pyruvate
Fetal Bovine Serum Fisher Scientific 10437028
Fibrinogen from Bovine Plasma Sigma – Aldrich F8630-5G Aliquots ranging from 7 – 10 mg of fibrinogen powder are made and stored at -20°C
Filtropur Syringe Filter, 0.22um Pore Size Sarstedt 83.1826.001
Horse Serum Gibco 16050-122
Human Recombinant Insulin Sigma – Aldrich 91077C Stock solution is 100X and made by dissolving 1 mg of human recombinant insulin in 1 mL of DMEM and 1 µL of NaOH 10N. Solution is filtered and stored as 1 mL aliquots at 4°C
Image Acquisition Software Olympus cellSens Dimension
Image Processing Software National Institutes of Health ImageJ
Isotemp Oven Thermo Fisher Scientific 201
Microscope Olympus IX83
Microscope – Camera Mount Labcam Labcam for iPhone Ordered from Amazon
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140-122
Plastic Disposable Syringes, 1cc BD 2606-309659
Plastic Disposable Syringes, 50cc BD 2612-309653
Pluronic F-127, Powder, BioReagent Sigma – Aldrich P2443-250G A 5% stock solution of pluronic acid is made by dissolving 5 g of pluronic acid powder in 100 mL of chilled, autoclaved, distilled water. The solution is vaccum filtered and 10 mL aliquots are stored at 4°C
Polydimethylsiloxane (Sylgard 184 Silicone Elastomer Kit) Dow 4019862 Kits are also available at Thermo Fisher Scientific, Sigma – Aldrich, etc.
Polyurethane Negative Mold In House
Release Agent Mann Release Technologies 200
Rotary Vane Vacuum Pump Edwards A65401906
Scalpel Almedic, Medstore, University of Toronto 2586-M36-0100
Single Edge Razor Blade VWR 55411-050
Skeletal Muscle Cell Basal Medium Promocell C-23260 30 mL aliquotes are generated and at stored at 4°C.
Skeletal Muscle Cell Growth Medium (Ready-to-use) Promocell C-23060 42 mL aliquots are generated and stored at 4°C.
Smartphone (iPhone) Apple SE
Standard Duty Dry Vacuum Pump Welch 2546B-01
Sterilization Bag Alliance 211-SCM2
Thimble Igege Ordered from Amazon
Thrombin from human plasma Sigma – Aldrich T6884-250UN 100 units of thrombin is dissolved in 1 mL of a 0.1% BSA solution. 10 µL aliquots are prepared and stored at – 20°C.
Tin coated copper wire Arco B8871K48 Ordered from Amazon
Trypan Blue Solution, 0.4% Thermo Scientific 15250061
Trypsin-EDTA, 0.25% Thermo FIsher Scientific 25200072
Vacuum Chamber 2 SP Bel-Art F42027-0000

Riferimenti

  1. Frontera, W. R., Ochala, J. Skeletal Muscle: A brief review of structure and function. Calcified Tissue International. 96 (3), 183-195 (2015).
  2. McGreevy, J. W., Hakim, C. H., McIntosh, M. A., Duan, D. Animal models of Duchenne muscular dystrophy: From basic mechanisms to gene therapy. DMM Disease Models and Mechanisms. 8 (3), 195-213 (2015).
  3. Young, J., et al. MyoScreen, a high-throughput phenotypic screening platform enabling muscle drug discovery. SLAS Discovery. 23 (8), 790-806 (2018).
  4. DiMasi, J. A., Hansen, R. W., Grabowski, H. G. The price of innovation: New estimates of drug development costs. Journal of Health Economics. 22 (2), 151-185 (2003).
  5. Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology. 8 (10), 839-845 (2007).
  6. Duval, K., et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 32 (4), 266-277 (2017).
  7. Vandenburgh, H., et al. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle and Nerve. 37 (4), 438-447 (2008).
  8. Vandenburgh, H., et al. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. The FASEB Journal. 23 (10), 3325-3334 (2009).
  9. Kim, J. H., et al. 3D bioprinted human skeletal muscle constructs for muscle function restoration. Scientific Reports. 8 (1), 12307 (2018).
  10. Takahashi, H., Shimizu, T., Okano, T. Engineered human contractile myofiber sheets as a platform for studies of skeletal muscle physiology. Scientific Reports. 8 (1), 1-11 (2018).
  11. Afshar Bakooshli, M., et al. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. eLife. 8, 1-29 (2019).
  12. Madden, L., Juhas, M., Kraus, W. E., Truskey, G. A., Bursac, N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. eLife. 2015 (4), 3-5 (2015).
  13. Urciuolo, A., et al. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale. PLoS One. 15 (5), 0232081 (2020).
  14. Cvetkovic, C., Rich, M. H., Raman, R., Kong, H., Bashir, R. A 3D-printed platform for modular neuromuscular motor units. Microsystems & Nanoengineering. 3 (1), 1-9 (2017).
  15. Shima, A., Morimoto, Y., Sweeney, H. L., Takeuchi, S. Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line. Experimental Cell Research. 370 (1), 168-173 (2018).
  16. Capel, A. J., et al. Scalable 3D printed molds for human tissue engineered skeletal muscle. Frontiers in Bioengineering and Biotechnology. 7, 20 (2019).
  17. Gholobova, D., et al. Human tissue-engineered skeletal muscle: a novel 3D in vitro model for drug disposition and toxicity after intramuscular injection. Scientific Reports. 8 (1), 1-14 (2018).
  18. Osaki, T., Uzel, S. G. M., Kamm, R. D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Science Advances. 4 (10), 5847 (2018).
  19. Rao, L., Qian, Y., Khodabukus, A., Ribar, T., Bursac, N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nature Communications. 9 (1), (2018).
  20. Maffioletti, S. M., et al. Three-dimensional human iPSC-derived artificial skeletal muscles model muscular dystrophies and enable multilineage tissue engineering. Cell Reports. 23 (3), 899-908 (2018).
  21. Chal, J., et al. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nature Protocols. 11 (10), 1833-1850 (2016).
  22. Khodabukus, A., et al. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials. 198, 259-269 (2019).
  23. Nagashima, T., et al. In vitro model of human skeletal muscle tissues with contractility fabricated by immortalized human myogenic cells. Advanced Biosystems. , 2000121 (2020).
  24. Mills, R. J., et al. Development of a human skeletal micro muscle platform with pacing capabilities. Biomaterials. 198, 217-227 (2019).
  25. Legant, W. R., et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proceedings of the National Academy of Sciences of the United States of America. 106 (25), 10097-10102 (2009).
  26. Prüller, J., Mannhardt, I., Eschenhagen, T., Zammit, P. S., Figeac, N. Satellite cells delivered in their niche efficiently generate functional myotubes in three-dimensional cell culture. PLOS One. 13 (9), 0202574 (2018).
  27. Sakar, M. S., et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab on a Chip. 12 (23), 4976-4985 (2012).
  28. Zhang, X., et al. A system to monitor statin-induced myopathy in individual engineered skeletal muscle myobundles. Lab on a Chip. 18 (18), 2787-2796 (2018).
  29. Rajabian, N., et al. Bioengineered skeletal muscle as a model of muscle aging and regeneration. Tissue Engineering Part A. 27 (1-2), 74-86 (2020).
  30. Afshar, M. E., et al. A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength. Scientific Reports. 10 (1), 6918 (2020).
  31. Mamchaoui, K., et al. Immortalized pathological human myoblasts: Towards a universal tool for the study of neuromuscular disorders. Skeletal Muscle. 1 (1), 34 (2011).
  32. Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R., Fleming, R. M. T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics. 63, 218-231 (2015).
  33. Chen, T. W., et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 499 (7458), 295-300 (2013).
  34. Bakooshli, M. A., et al. A 3D model of human skeletal muscle innervated with stem cell-derived motor neurons enables epsilon-subunit targeted myasthenic syndrome studies. BioRxiv. , 275545 (2018).
  35. Vandenburgh, H. H., Karlisch, P., Farr, L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. Vitro Cellular & Developmental Biology. 24 (3), 166-174 (1988).
  36. Bell, E., Ivarsson, B., Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proceedings of the National Academy of Sciences of the United States of America. 76 (3), 1274-1278 (1979).
  37. Hinds, S., Bian, W., Dennis, R. G., Bursac, N. The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials. 32 (14), 3575-3583 (2011).

Play Video

Citazione di questo articolo
Lad, H., Musgrave, B., Ebrahimi, M., Gilbert, P. M. Assessing Functional Metrics of Skeletal Muscle Health in Human Skeletal Muscle Microtissues. J. Vis. Exp. (168), e62307, doi:10.3791/62307 (2021).

View Video