Summary

मुराइन हार्ट्स में ऑप्टोजेनेटिक मल्टी-साइट फोटोस्टिम्यूलेशन लागू करके उन्नत कार्डियक रिदम प्रबंधन

Published: August 26, 2021
doi:

Summary

यह काम ट्रांसजेनिक चैनलरोडोप्सिन -2 (सीएचआर 2) चूहों के बरकरार मुराइन दिलों की हृदय ताल को नियंत्रित करने के लिए एक विधि की रिपोर्ट करता है, जो माइक्रो-एलईडी सरणी के साथ स्थानीय फोटोस्टिम्यूलेशन और एपिकार्डियल झिल्ली क्षमता के एक साथ ऑप्टिकल मैपिंग का उपयोग करता है।

Abstract

वेंट्रिकुलर टैचीरिथमिया दुनिया भर में मृत्यु दर और रुग्णता का एक प्रमुख कारण है। उच्च ऊर्जा वाले बिजली के झटके का उपयोग करके विद्युत डिफिब्रिलेशन वर्तमान में जीवन-धमकी देने वाले वेंट्रिकुलर फाइब्रिलेशन के लिए एकमात्र उपचार है। हालांकि, डिफिब्रिलेशन के दुष्प्रभाव हो सकते हैं, जिसमें असहनीय दर्द, ऊतक क्षति और रोग का बिगड़ना शामिल है, जो अधिक कोमल हृदय ताल प्रबंधन रणनीतियों के विकास के लिए एक महत्वपूर्ण चिकित्सा आवश्यकता का संकेत देता है। ऊर्जा को कम करने वाले विद्युत दृष्टिकोण के अलावा, कार्डियक ऑप्टोजेनेटिक्स को प्रकाश-संवेदनशील झिल्ली आयन चैनलों और प्रकाश दालों का उपयोग करके हृदय गतिविधि को प्रभावित करने के लिए एक शक्तिशाली उपकरण के रूप में पेश किया गया था। वर्तमान अध्ययन में, लैंगेंडॉर्फ के सफल फोटोस्टिम्यूलेशन के लिए एक मजबूत और वैध विधि का वर्णन मल्टी-साइट पेसिंग के आधार पर किया जाएगा, जो माइक्रो लाइट-एमिटिंग डायोड (माइक्रो-एलईडी) की 3 x 3 सरणी को लागू करता है। एपिकार्डियल झिल्ली वोल्टेज तरंगों का एक साथ ऑप्टिकल मानचित्रण क्षेत्र-विशिष्ट उत्तेजना के प्रभावों की जांच की अनुमति देता है और सीधे साइट पर नई प्रेरित हृदय गतिविधि का मूल्यांकन करता है। प्राप्त परिणाम बताते हैं कि डिफिब्रिलेशन की प्रभावकारिता कार्डियक अतालता के दौरान फोटोस्टिम्यूलेशन के लिए चुने गए मापदंडों पर दृढ़ता से निर्भर है। यह प्रदर्शित किया जाएगा कि हृदय का रोशन क्षेत्र समाप्ति की सफलता के लिए एक महत्वपूर्ण भूमिका निभाता है और साथ ही अतालता पैटर्न को संशोधित करने के लिए रोशनी के दौरान हृदय गतिविधि का लक्षित नियंत्रण कैसे प्राप्त किया जा सकता है। सारांश में, यह तकनीक कार्डियक ताल के वास्तविक समय प्रतिक्रिया नियंत्रण के रास्ते पर ऑन-साइट तंत्र हेरफेर को अनुकूलित करने की संभावना प्रदान करती है और, क्षेत्र विशिष्टता के बारे में, गैर-विशिष्ट विद्युत सदमे अनुप्रयोगों के उपयोग की तुलना में हृदय प्रणाली को संभावित नुकसान को कम करने में नए दृष्टिकोण।

Introduction

अतालता के दौरान स्थानिक-अस्थायी गतिशीलता की प्रारंभिक जांच से पता चला है कि कार्डियक फाइब्रिलेशन के दौरान जटिल विद्युत पैटर्न भंवर जैसी घूर्णनउत्तेजना तरंगों द्वारा संचालित होते हैं। इस खोज ने अतालता के अंतर्निहित तंत्र में नई अंतर्दृष्टि दी, जिसके कारण मायोकार्डियम 2,3,4 के बहु-साइट उत्तेजना के आधार पर नए विद्युत समाप्ति उपचारों का विकास हुआ। हालांकि, विद्युत क्षेत्र उत्तेजना का उपयोग करने वाले उपचार गैर-स्थानीय हैं और मांसपेशियों के ऊतकों सहित आसपास की सभी उत्तेजक कोशिकाओं को आंतरिक कर सकते हैं, जिससे सेलुलर और ऊतक क्षति, साथ ही असहनीय दर्द भी हो सकता है। विद्युत चिकित्सा के विपरीत, ऑप्टोजेनेटिक दृष्टिकोण उच्च स्थानिक और लौकिक परिशुद्धता के साथ कार्डियोमायोसाइट एक्शन पोटेंशिअल को उत्तेजित करने के लिए एक विशिष्ट और ऊतक-सुरक्षात्मक तकनीक प्रदान करते हैं। इसलिए, ऑप्टोजेनेटिक उत्तेजना में कार्डियक फाइब्रिलेशन के दौरान अराजक सक्रियण पैटर्न के न्यूनतम आक्रामक नियंत्रण की क्षमता है।

आनुवंशिक हेरफेर 5,6,7 के माध्यम से उत्तेजक कोशिकाओं में प्रकाश-संवेदनशील आयन चैनल रोडोप्सिन -2 (सीएचआर 2) की शुरूआत ने फोटोस्टिम्यूलेशन का उपयोग करके उत्तेजक कोशिकाओं की झिल्ली क्षमता के विध्रुवण को सक्षम किया। न्यूरोनल नेटवर्क के सक्रियण, हृदय गतिविधि का नियंत्रण, दृष्टि और सुनवाई की बहाली, रीढ़ की हड्डी की चोटों का उपचार, और अन्य 8,9,10,11,12,13,14 सहित कई चिकित्सा अनुप्रयोग विकसित किए गए हैं। कार्डियोलॉजी में सीएचआर 2 के आवेदन में इसके मिलीसेकंड प्रतिक्रिया समय15 के कारण महत्वपूर्ण क्षमता है, जिससे यह लयबद्ध हृदय गतिशीलता के लक्षित नियंत्रण के लिए अच्छी तरह से अनुकूल है।

इस अध्ययन में, ट्रांसजेनिक माउस मॉडल के बरकरार दिलों के बहु-साइट फोटोस्टिम्यूलेशन को दिखाया गया है। संक्षेप में, एक ट्रांसजेनिक अल्फा-एमएचसी-सीएचआर 2 माउस लाइन यूरोपीय समुदाय के सातवें फ्रेमवर्क प्रोग्राम एफपी 7/2007-2013 (हेल्थ-एफ 2-2009-241526) के दायरे में स्थापित की गई थी और कृपया प्रोफेसर एस ई लेहनार्ट द्वारा प्रदान की गई थी। सामान्य तौर पर, ट्रांसजेनिक वयस्क पुरुष C57/B6/J, अल्फा-एमएचसी के नियंत्रण में क्रे-रिकोम्बिनेस को व्यक्त करते हुए मादा B6.Cg-जीटी (ROSA)26Sortm27.1 (CAG-COP4* H134R/tdTomato) Hye/J के साथ संभोग करने के लिए जोड़ा गया था। चूंकि कार्डियक स्टॉप कैसेट को दूसरी पीढ़ी में हटा दिया गया था, इसलिए संतान ने एक स्थिर एमएचसी-सीएचआर 2 अभिव्यक्ति दिखाई और इसका उपयोग कार्डियक फोटोसेंसिटिव कॉलोनियों को बनाए रखने के लिए किया गया था। सभी प्रयोग 36 – 48 सप्ताह की उम्र में दोनों लिंगों के वयस्क चूहों के साथ किए गए थे। रोशनी को 3 x 3 माइक्रो-एलईडी सरणी का उपयोग करके हासिल किया जाता है, जैसा कि16,17 में वर्णित है, सिवाय इसके कि सिलिकॉन-आधारित आवास और लघु ऑप्टिकल ग्लास फाइबर लागू नहीं किए जाते हैं। कार्डियक एप्लिकेशन में इसका पहला उपयोग18 में पाया जाता है। एक समान निर्माण तकनीक पर आधारित एक रैखिक माइक्रो-एलईडी सरणी को हार्ट पेसिंग19 के लिए एक मर्मज्ञ जांच के रूप में लागू किया गया है। माइक्रो-एलईडी को 550 μm की पिच पर 3 x 3 सरणी में व्यवस्थित किया जाता है, जो एक बहुत छोटे क्षेत्र पर एक उच्च स्थानिक रिज़ॉल्यूशन और उच्च चमकदार शक्ति दोनों प्रदान करता है। लेखक इस काम में एक बहुमुखी स्थानीय बहु-साइट फोटोस्टिम्यूलेशन प्रदर्शित करते हैं जो उपन्यास एंटी-लयबद्ध चिकित्सा विधियों को विकसित करने के लिए मार्ग खोल सकता है।

निम्नलिखित प्रयोगात्मक प्रोटोकॉल में एक प्रतिगामी लैंगनडॉर्फ छिड़काव एक्स विवो शामिल है, जिसके लिए कैनुलेटेड महाधमनी छिड़काव इनलेट के रूप में कार्य करती है। लागू छिड़काव दबाव और हृदय संकुचन के कारण परफ्यूसेट कोरोनरी धमनियों के माध्यम से बह रहा है, जो महाधमनी से शाखा करता है। प्रस्तुत कार्य में, हृदय को 73.2 मिमीएचजी के बराबर, परफ्यूसेट जलाशयों को 1 मीटर ऊंचाई तक बढ़ाकर प्राप्त निरंतर दबाव सेटअप का उपयोग करके संक्रमित किया जाता है, जो 2.633 ± 0.583 एमएल / मिनट की प्रवाह दर तक उपज देता है। प्रयोग के दौरान दो प्रकार के टायरोड के समाधान का उपयोग परफ्यूसेट के रूप में किया जाता है। नियमित टायरोड का समाधान एक स्थिर साइनस ताल का समर्थन करता है, जबकि लो-के + टायरोड के समाधान को पिनासिडिल के साथ मिलाया जाता है ताकि मुराइन दिल में अतालता के प्रेरण को सक्षम किया जा सके। हेक्सागोनल पानी के स्नान का उपयोग छह अलग-अलग प्लानर खिड़कियों के माध्यम से हृदय के अवलोकन की अनुमति देता है, जिससे अपवर्तन द्वारा कम विकृति के साथ कई ऑप्टिकल घटकों के युग्मन की अनुमति मिलती है।

Protocol

सभी प्रयोगों ने जर्मन कानून, स्थानीय शर्तों के साथ समझौते में और यूरोपीय प्रयोगशाला पशु विज्ञान संघों (एफईएलएएसए) के महासंघ की सिफारिशों के अनुसार पशु कल्याण विनियमन का सख्ती से पालन किया। पशु प्रयोग?…

Representative Results

प्रोटोकॉल एलईडी 1 और एलईडी 2 (चित्रा 1) द्वारा उत्पन्न फोटोस्टिम्यूलेशन पल्स का उपयोग करके बरकरार मुराइनदिलों में वेंट्रिकुलर अतालता को शामिल करने की अनुमति देता है, जिसमें 25 हर्ट्ज और 35 ?…

Discussion

कार्डियक टैचीरिथमिया का एक सफल उपचार कार्डियक थेरेपी के लिए महत्वपूर्ण है। हालांकि, अतालता दीक्षा, स्थायीकरण और समाप्ति के अंतर्निहित बायोफिज़िकल तंत्र पूरी तरह से समझ में नहीं आते हैं। इसलिए, कार्ड…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

लेखक प्रयोगों के दौरान अपने उत्कृष्ट तकनीकी समर्थन के लिए मैरियन कुंजे और टीना अल्थॉस को धन्यवाद देना चाहते हैं। परिणामों के लिए अग्रणी अनुसंधान को यूरोपीय समुदाय के सातवें फ्रेमवर्क प्रोग्राम एफपी 7/2007-2013 से अनुदान समझौता संख्या हेल्थ-एफ 2-2009-241526 के तहत धन प्राप्त हुआ है। जर्मन सेंटर फॉर कार्डियोवैस्कुलर रिसर्च, डीजेडएचके ईवी (प्रोजेक्ट एमडी 28), पार्टनर साइट गोएटिंगेन, जर्मन रिसर्च फाउंडेशन सीआरसी 1002 (प्रोजेक्ट सी 03), और मैक्स प्लैंक सोसाइटी द्वारा भी सहायता प्रदान की गई थी। यह काम आंशिक रूप से ब्रेनलिंक्स-ब्रेनटूल्स, जर्मन रिसर्च फाउंडेशन (डीएफजी, अनुदान संख्या ईएक्ससी 1086) द्वारा वित्त पोषित उत्कृष्टता के क्लस्टर द्वारा समर्थित था।

Materials

Chemical Components
Blebbistatin TargetMol T6038 10 mM stock solution
BSA/Albumin Sigma-Aldrich A4919
Calcium Chloride Sigma-Aldrich C1016 CaCl2
Carbogen Westfalen 50 l bottle
DI-4-ANBDQPQ AAT Bioquest 21499 Dye for Optical Mapping
Glucose Sigma-Aldrich D9434 C6H12O6
Heparin LEO Pharma Heparin-Natrium Leo 25.000 I.E./5 ml, available only on prescription
Hydrochlorid Acid Merck 1.09057.1000 HCl, 1 M stock solution
Isoflurane CP Pharma 1 ml/ml, available only on prescription
Magnesium Chloride Merck 8.14733.0500 MgCl2
Monopotassium Phosphate Sigma-Aldrich 30407 KH2PO4
Pinacidil monohydrate Sigma-Aldrich P154-500mg 10 mM stock solution
Potassium Chloride Sigma-Aldrich P5405 KCl
Sodium Bicarbonate Sigma-Aldrich S5761 NaHCO3
Sodium Chloride Sigma-Aldrich S5886 NaCl
Sodium Hydroxide Merck 1.09137.1000 NaOH, 1 M stock solution
Electrical Setup
Biopac MP150 Biopac Systems MP150WSW data acquisition and analysis system
Custom-built ECG, alternative ECG100C Biopac Systems ECG100C Electrocardiogram Amplifier
Custom-built water bath heater using heating cable RMS Heating System HK-5,0-12 Heating cable 120W
Hexagonal water bath
LED Driver Power supply Thorlabs KPS101 15 V, 2.4 A Power Supply Unit with 3.5 mm Jack Connector for One K- or T-Cube.
LEDD1B LED Driver Thorlabs LEDD1B T-Cube LED Driver, 1200 mA Max Drive Current
MAP, ECG Electrode Hugo Sachs Elektronik BS4 73-0200 Mini-ECG Electrode for isoalted hearts
micro-LED Driver e.g. AFG Agilent Instruments A-2230 Arbitrary function generator (AFG)
Signal Generator Agilent Instruments A-2230 AFG
micro-LED Array Components
Epoxid glue Epoxy Technology EPO-TEK 353ND Two component epoxy
Fluoropolymer  Asahi Glass Co. Ltd. Cytop 809M Fluoropolymer with high transparency
Image reversal photoresist Merck KGaA AZ 5214E Image Reversal Resist for High Resolution
LED chip  Cree Inc. C460TR2227-S2100 Blue micro-LED
Photoresist Merck KGaA AZ 9260 Thick Positive Photoresists
Polyimide UBE Industries Ltd. U-Varnish S Polyimide Solution
Silicone NuSil Technology LLC MED-6215 Low viscosity silicone elastomer
Solvent free adhesive John P. Kummer GmbH Epo-Tek 301-2 Epoxy resin with low viscosity
Optical Mapping
Blue Filter Chroma Technology Corporation ET470/40x Blue excitation filter
Camera Photometrics Cascade 128+ High performance EMCCD Camera
Camera Objective Navitar DO-5095 Navitar high speed fixed focal length lenses work with CCD and CMOS cameras
Dichroic Mirror Semrock FF685-Di02-25×36 685 nm edge BrightLine® single-edge standard epi-fluorescence dichroic beamsplitter
Emmision Filter Semrock FF01-775/140-25 775/140 nm BrightLine® single-band bandpass filter
Heatsink Advanced Thermal Solutions ATSEU-077A-C3-R0 Heat Sinks – LED STAR LED Heatsink, 45mm dia., 68mm, Black/Silver, Unthreaded Baseplate Hardware
LED 1 and LED 2 LED Engin Osram LZ4-00B208 High Power LEDs – Single Colour Blue, 460 nm 130 lm, 700mA
LED 3 Thorlabs M625L3 625 nm, 700 mW (Min) Mounted LED, 1000 mA
Lenses LED Engin Osram LLNF-2T06-H LED Lighting Lenses Assemblies LZ4 LENS NARROW FLOOD BEAM
Photodiode for power meter Thorlabs S120VC Standard Photodiode Power Sensor
Power Meter Thorlabs PM100D Compact Power and Energy Meter
Red Filter Semrock FF02-628/40-25 BrightLine® single-band bandpass filter

Riferimenti

  1. Davidenko, J. M., Pertsov, A. V., Salamonsz, R. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 355, 349-351 (1992).
  2. Fenton, F. H., et al. Termination of atrial fibrillation using pulsed low-energy far-field stimulation. Circulation. 120 (6), 467-476 (2009).
  3. Luther, S., et al. Low-energy control of electrical turbulence in the heart. Nature. 475, 235-239 (2011).
  4. Pumir, A., et al. Wave emission from heterogeneities opens a way to controlling chaos in the heart. Physical Review Letters. 99, 208101 (2007).
  5. Deisseroth, K. Optogenetics. Nature Methods. 8, 26-29 (2011).
  6. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience. 8, 1263-1268 (2005).
  7. Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences. 100 (24), 13940-13945 (2003).
  8. Bruegmann, T., et al. Optogenetic control of heart muscle in vitro and in vivo. Nature Methods. 7, 897-900 (2010).
  9. Natasha, G., et al. et al.Channelrhodopsins: visual regeneration and neural activation by a light switch. New Biotechnology. 30 (5), 461-474 (2013).
  10. Zhang, F., et al. Multimodal fast optical interrogation of neural circuitry. Nature. 446, 633-639 (2007).
  11. Alilain, W. J., et al. Light-induced rescue of breathing after spinal cord injury. Journal of Neuroscience. 28 (46), 11862-11870 (2008).
  12. Ahmad, A., Ashraf, S., Komai, S. Optogenetics applications for treating spinal cord injury. Asian Spine Journal. 9 (2), 299-305 (2015).
  13. Dieter, A., Keppeler, D., Moser, T. Towards the optical cochlear implant: Optogenetic approaches for hearing restoration. EMBO Molecular Medicine. 12 (4), e11618 (2020).
  14. Keppeler, D., et al. Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents. Science Translational Medicine. 12 (553), eabb8086 (2020).
  15. Verhoefen, M. K., Bamann, C., Blöcher, R., Förster, U., Bamberg, E. The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps. ChemPhysChem. 11 (14), 3113-3122 (2010).
  16. Schwaerzle, M., Elmlinger, P., Paul, O., Ruther, P. Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing. , 5252-5255 (2014).
  17. Schwaerzle, M., Elmlinger, P., Paul, O., Ruther, P. Miniaturized 3 x 3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection. , 162-165 (2015).
  18. Diaz-Maue, L., Schwaerzle, M., Ruther, P., Luther, S., Richter, C. Follow the light – From low-energy defibrillation to multi-site photostimulation. , 4832-4835 (2018).
  19. Zgierski-Johnston, C., et al. Cardiac pacing using transmural multi-LED probes in channelrhodopsin-expressing mouse hearts. Progress in Biophysics and Molecular Biology. , 51-61 (2020).
  20. . mouser.de, LED Engin, [Online] Available from: https://www.mouser.de/datasheet/2/228/5412893-LED_2520Engin_Datasheet_LuxiGen_LZ4-00B208 (2020)
  21. . thorlabs.com, thorlabs, [Online] Available from: https://www.thorlabs.com/_sd.cfm?fileName=25135-S01.pdf&partNumber=M625L3 (2020)
  22. Bruegmann, T., et al. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. Journal of Clinical Investigation. 126 (10), 3894-3904 (2016).
  23. Richter, C., Christoph, J., Lehnart, S. E., Luther, S. Optogenetic light crafting tools for the control of cardiac arrhythmias. Methods in Molecular Biology. 1408, 293-302 (2016).
  24. Quiñonez Uribe, R. A., Luther, S., Diaz-Maue, L., Richter, C. Energy-reduced arrhythmia termination using global photostimulation in optogenetic murine hearts. Frontiers in Physiology. 9 (1651), (2018).
  25. Moreno, I. LED irradiance pattern at short distances. Applied Optics. 59 (1), 190-195 (2020).
  26. Behrend, A., Bittihn, P., Luther, S. Predicting unpinning success rates for a pinned spiral in an excitable medium. , 345-348 (2010).
  27. Kappadan, V., et al. High-resolution optical measurement of cardiac restitution, contraction, and fibrillation dynamics in beating vs. blebbistatin-uncoupled isolated rabbit hearts. Frontiers in Physiology. 11 (464), (2020).
  28. Christoph, J., et al. Electromechanical vortex filaments during cardiac fibrillation. Nature. 555, 667-672 (2018).
  29. O’Shea, C. Cardiac optogenetics and optical mapping – Overcoming spectral congestion in all-optical cardiac electrophysiology. Frontiers in Physiology. 10 (182), (2019).
  30. Aras, K. K., Faye, N. R., Cathey, B., Efimov, I. R. Critical volume of human myocardium necessary to maintain ventricular fibrillation. Circulation: Arrhythmia and Electrophysiology. 11 (11), e006692 (2018).
  31. Trayanova, N., Doshi, A. N., Prakosa, A. How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients. Wiley Interdisciplinary Reviews in System Biology and Medicine. 12 (3), 1477 (2020).
  32. Bingen, B., et al. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovascular Research. 104 (1), 194-205 (2014).
  33. Burton, R. A. B., et al. Optical control of excitation waves in cardiac tissue. Nature Photonics. 9 (12), 813-816 (2015).
  34. Dura, M., Schröder-Schetelig, J., Luther, S., Lehnart, S. E. Toward panoramic in situ mapping of action potential propagation in transgenic hearts to investigate initiation and therapeutic control of arrhythmias. Frontiers in Physiology. 5, 337 (2014).
  35. Crocini, C., et al. Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation. Science Reports. 6 (35628), (2016).
  36. Nyns, E. C. A., et al. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management. European Heart Journal. 38 (27), 2132-2136 (2017).
  37. Wilde, A. A. K+atp channel opening and arrhythmogenesis. Journal of Cardiovascular Pharmacology. 24 (4), 35-40 (1994).
  38. Christoph, J., Luther, S. Marker-free tracking for motion artifact compensation and deformation measurements in optical mapping videos of contracting hearts. Frontiers in Physiology. 9 (1483), (2018).
  39. Christoph, J., Schröder-Schetelig, J., Luther, S. Electromechanical optical mapping. Progress in Biophysics and Molecular Biology. 130(B), 150-169 (2017).
check_url/it/62335?article_type=t&slug=advanced-cardiac-rhythm-management-applying-optogenetic-multi-site

Play Video

Citazione di questo articolo
Diaz-Maue, L., Steinebach, J., Schwaerzle, M., Luther, S., Ruther, P., Richter, C. Advanced Cardiac Rhythm Management by Applying Optogenetic Multi-Site Photostimulation in Murine Hearts. J. Vis. Exp. (174), e62335, doi:10.3791/62335 (2021).

View Video