Summary

ハンドトラクターの運転中の人手腕システムの手伝振動の測定

Published: June 16, 2021
doi:

Summary

ここでは、握力や振動周波数の変化を特に参考にした単軸トラクターのハンドルから、手で伝達された振動の測定方法を標準化した方法で紹介します。

Abstract

ハンドトラクターのオペレータは、高レベルの手伝え振動(HTV)にさらされています。人間の健康に有害で危険なこの振動は、彼または彼女の手と腕を介してオペレータに与えられる。しかし、ハンドトラクターのHTVを測定するための標準化された方法はまだ定義されていません。本研究の目的は、ハンドトラクターの作動時のハンドアームシステムの生体力学的応答と振動透過性を静止モードで調査するための実験的手法を提示することであった。測定は、3つのグリップ力と3つのハンドル振動レベルを使用して10人の被験者で行われ、手の圧力と受け取った振動(HTV)の周波数の影響を調べました。この結果は、ハンドルのグリップの締め付けが、特に20〜100Hzの周波数において、ハンドアームシステムの振動応答に影響を与えることを示しています。ハンドアームシステムにおける低周波数の伝送は比較的減衰されなかった。それに比べて、減衰はハンドトラクターの運転中に高い周波数のためにかなりマークされていることがわかった。ハンドアームシステムの異なる部分に対する振動透過率は、振動源からの距離の増加に伴って減少した。提案された方法論はオペレータの振動の露出および人間工学の発達の評価のための一貫したデータの収集に貢献する。

Introduction

パワーティリングとも呼ばれるハンドトラクターは、小さな畑の土地整備のために発展途上国で広く使用されています。ハンドトラクターのフィールド操作は機械の後ろを歩き、その動きを制御するためにハンドルを握ることを含む。ハンドトラクターのオペレータは、小さな単一シリンダーエンジンとハンドトラクター1のサスペンションシステムの欠如に起因する可能性のある高レベルの振動にさらされています。ハンドアーム振動症候群(HAVS)2は、ハンドトラクターによって発生し、オペレータの手で受け取る、手伝え振動(HTV)という振動からの長時間の持久力によって引き起こされる可能性があります。ハンドトラクターのHTVへのオペレータの暴露によって得られる健康上のリスクを評価するためには、手腕システムの振動応答の測定方法を確立する必要があります。

手腕系は骨、筋肉、組織、静脈および動脈、腱および皮膚3で構成され、HTVの直接測定は多くの問題を引き起こす。関連する国際規格4、5は、手の座標系、加速度計の位置と取り付け、測定時間、ケーブルコネクタの問題などを含む、手の直近に発生する振動の重症度の測定に関するガイドラインを提供する。しかし、この規格では、グリップ力、手と腕の姿勢、個々の因子などの固有の変数考慮されていません。これらの要因は、振動励起の広い範囲の下で広範囲に検討されており、試験条件6、7、8、9、10、11、12、13が、異なる研究者の結果は良好に一致していません。これらの要因の多くは、標準的な方法に組み込まれることが十分に理解されていない。この制限は、人間の手腕システムの複雑さ、試験条件、および使用される実験および測定技術の違いに部分的に起因する。

さらに、HTVの以前の測定のほとんどは、理想的な振動励起、グリップ力、姿勢条件を用いて慎重に制御された条件下で行われました。したがって、これらの測定の知見と実験手順は、ハンドトラクターの動作条件のような実際の条件を真に再現していない可能性があります。さらに、フィールド測定を用いたハンドトラクターのHTVを研究するための努力は限られています。これらの測定は、オペレータの手首、腕、胸部、および頭部に取り付けられた加速度計を用いて、トラクターの輸送条件1の下で全身振動を測定し、または投げ込まれたフィールドで耕し、エンジン速度14の異なる水没場で水たまりの条件下で行われた。HTV7,8の重要な要因となり得るグリップ力の効果は孤立していなかった。これらの方法は、過酷な環境条件に起因する農業中のオペレータの様々な強制姿勢のために標準化された測定手順として適していません。

本研究は、静止モードでのハンドトラクターのHTV測定のための信頼性と再現性の高い手順の確立に貢献するために行われました。図1は実験計画の概略図を示す。中国で製造され、中国の農家によって一般的に使用されるハンドトラクターが採用され、10人の研究労働者が研究の対象として選ばれました。振動を測定するために、トラクターハンドアームシステムに取り付けられた7つの軽量圧電加速度計を使用しました。1つのタコメータと2つの薄膜圧力センサーは、テスト中にエンジン速度とグリップ力を監視しました。被験者は、指定されたエンジン速度でハンドトラクターを順次操作し、様々な動作モードで振動特性を得るために指定されたグリップ力で動作させる必要がありました。この原稿は、グリップ力と振動周波数の変化を独自に考慮したトラクターハンドアームシステムのHTV測定のための詳細なプロトコルを提供します。

Protocol

すべての手続きは重慶工科大学の倫理委員会によって承認され、各科目は本研究に参加する前に書面によるインフォームド・コンセントを提供した。 1. ハンドトラクターの準備 ハンドトラクターは、ボルトの緩みがなく、異常な振動をもたらす他の機械的欠陥なしに、完全な燃料タンクで適切な試験条件を受けることを確認してください。注: この実験で使用…

Representative Results

実験は、静止状態でのハンドトラクターの運転中に、10人の健康な被験者(表2)上の実験室(気温22.0°C±1.5°C)で行った。 プロトコルに従い、ハンドトラクターのハンドル、手の後ろ、手首、腕、および各被験者の肩から振動加速度データを収集した。ハンドルで発生する振動加速度のスペクトル(手への入力)が得られた。 図 8 は、特定の?…

Discussion

本研究で提示されたプロトコルは、HTV規格4、5、24に基づいて確立され静止状態でのハンドトラクターの動作中に人間の手腕システムのHTVを測定するための標準的なステップとして開発された。この状態は、実際に手と腕に伝達される振動の信頼性の高い測定を確実にするのに役立つハンドトラクターの最も安定した状?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この研究は、中国重慶自然科学財団(cstc2019jj-msxmX0046)、重慶中国教育委員会(KJQN2001127)、中国重慶(2020TJZ010)のバナン地区科学技術委員会のプロジェクトによって支援されました。著者らは、ヤン・ヤン教授が試験場を提供してくれたことに感謝したいと考えています。また、ジンシュ・ワン博士とジンフア・マー博士の振動測定計器のご指導に感謝しています。また、実験中の心のこもった協力を受けた被験者に感謝しています。

Materials

Accelerometers PCB Piezotronics Inc. 352C33, 356A04 Used to measure vibration signals. Including 2 tri-axial accelerometers and 5 single-axis accelerometers.
CompactDAQ System National Instruments cRIO-9045,NI-9234 C Used for acceleration acquisition. The system consists of a chassis and 3 data acquisition cards.
Digital caliper Sanliang 160800635 Used to measure dimensions of the hand.
Digital goniometer Sanliang 802973 Used to measure hand and arm posture.
Laptop computer Lenovo Ideapad 500s To run the softwares.
Matlab MathWorks Inc. Version 2020a Used for data processing.
NI SignalExpress National Instruments Trial version 2015 Use to acquire, analyze and present acceleration data.
Tachometer Sanliang TM 680 Used to measure engine speed.
Thin-film pressure sensing system YourCee n/a Used to measure grip force. The system consists of 2 thin-film sensors, a STM32 singlechip and a LED display.

References

  1. Ahmadian, H., Hassan-Beygi, S. R., Ghobadian, B., Najafi, G. ANFIS modeling of vibration transmissibility of a power tiller to operator. Applied Acoustics. 138, 39-51 (2018).
  2. Heaver, C., Goonetilleke, K. S., Ferguson, H., Shiralkar, S. Hand-arm vibration syndrome: a common occupational hazard in industrialized countries. Journal of Hand Surgery. 36 (5), 354-363 (2011).
  3. Geethanjali, G., Sujatha, C. Study of Biomechanical Response of Human Hand-Arm to Random Vibrations of Steering Wheel of Tractor. Molecular & Cellular Biomechanics. 10 (4), 303-317 (2013).
  4. International Organization for Standardization. ISO 5349-1: Mechanical Vibration: Measurement and Evaluation of Human Exposure to Hand Transmitted Vibration Part 1: General requirements. International Organization for Standardization. , (2001).
  5. International Organization for Standardization. ISO5349-2: Mechanical vibration- Measurement and evaluation of human exposure to hand-transmitted vibration. Part 2: Practical guidance for measurement at the workplace. International Organization for Standardization. , (2001).
  6. Besa, A. J., Valero, F. J., Suñer, J. L., Carballeira, J. Characterisation of the mechanical impedance of the human hand-arm system: The influence of vibration direction, hand-arm posture and muscle tension. International Journal of Industrial Ergonomics. 37 (3), 225-231 (2007).
  7. Marcotte, P., Aldien, Y., Boileau, P. &. #. 2. 0. 1. ;., Rakheja, S., Boutin, J. Effect of handle size and hand-handle contact force on the biodynamic response of the hand-arm system under zh-axis vibration. Journal of Sound and Vibration. 283 (3-5), 1071-1091 (2005).
  8. Pan, D., et al. The relationships between hand coupling force and vibration biodynamic responses of the hand-arm system. Ergonomics. 61 (6), 818-830 (2018).
  9. Dong, R. G., Rakheja, S., Schopper, A. W., Han, B., Smutz, W. P. Hand-transmitted vibration and biodynamic response of the human hand-arm: a critical review. Critical Reviews In Biomedical Engineering. 29 (4), 393-439 (2001).
  10. Marchetti, E., et al. An investigation on the vibration transmissibility of the human elbow subjected to hand-transmitted vibration. International Journal of Industrial Ergonomics. 62, 82-89 (2017).
  11. McDowell, T. W., Welcome, D. E., Warren, C., Xu, X. S., Dong, R. G. Assessment of hand-transmitted vibration exposure from motorized forks used for beach-cleaning operations. Annals of Work Exposures and Health. 57 (1), 43-53 (2013).
  12. Tony, B. J. A. R., Alphin, M. S. Finite element analysis to assess the biomechanical behavior of a finger model gripping handles with different diameters. Biomedical Human Kinetics. 11 (1), 69-79 (2019).
  13. Tony, B. J. A. R., Alphin, M. S., Velmurugan, D. Influence of handle shape and size to reduce the hand-arm vibration discomfort. Work. 63 (3), 415-426 (2019).
  14. Dewangan, V. K. T. Characteristics of hand-transmitted vibration of a hand tractor used in three operational modes. International Journal of Industrial Ergonomics. 39 (1), 239-245 (2009).
  15. Kalra, M., Rakheja, S., Marcotte, P., Dewangan, K. N., Adewusi, S. Measurement of coupling forces at the power tool handle-hand interface. International Journal of Industrial Ergonomics. 50, 105-120 (2015).
  16. Gurram, R., Rakheja, S., Gouw, G. J. A study of hand grip pressure distribution and EMG of finger flexor muscles under dynamic loads. Ergonomics. 38 (4), 684-699 (1995).
  17. Tarabini, M., Saggin, B., Scaccabarozzi, D., Moschioni, G. Hand-arm mechanical impedance in presence of unknown vibration direction. International Journal of Industrial Ergonomics. 43 (1), 52-61 (2013).
  18. Aatola, S. Transmission of vibration to the wrist and comparison of frequency response function estimators. Journal of Sound and Vibration. 131 (3), 497-507 (1989).
  19. Kihlberg, S. Biodynamic response of the hand-arm system to vibration from an impact hammer and a grinder. International Journal of Industrial Ergonomics. 16 (1), 1-8 (1995).
  20. Gurram, R., Rakheja, S., Gouw, G. J. Vibration transmission characteristics of the human hand-arm and gloves. International Journal of Industrial Ergonomics. 13 (3), 217-234 (1994).
  21. Burström, A. S. L. Transmission of vibration energy to different parts of the human hand-arm system. Int Arch Occup Environ Health. 70 (3), 199-204 (1997).
  22. Hartung, E., Dupuis, H., Scheffer, M. Effects of grip and push forces on the acute response of the hand-arm system under vibrating conditions. International Archives of Occupational and Environmental Health. 64 (6), 463-467 (1993).
  23. Pope, M. H., Magnusson, M., Hansson, T. The upper extremity attenuates intermediate frequency vibrations. Journal of Biomechanics. 30 (2), 103-108 (1997).
  24. International Organization for Standardization. ISO 8041-1: Human response to vibration-Measuring instrumentation. International Organization for Standardization. , (2017).
  25. Ying, Y. B., Zhang, L. B., Xu, F., Dong, M. D. Vibratory characteristics and hand-transmitted vibration reduction of walking tractor. Transactions Of The ASAE. 41 (4), 917-922 (1998).
  26. Dewangan, K. N., Tewari, V. K. Characteristics of vibration transmission in the hand-arm system and subjective response during field operation of a hand tractor. Biosystems Engineering. 100 (4), 535-546 (2008).
  27. Xu, X. S., et al. Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head. International Journal of Industrial Ergonomics. 62, 1-12 (2017).
check_url/62508?article_type=t

Play Video

Cite This Article
Lu, S., Jiang, R., Xiao, X., Li, Y., Huang, X., Song, K., Chen, C., Ding, J. Measurement of the Hand Transmitted Vibration of the Human Hand Arm System During Operation of a Hand Tractor. J. Vis. Exp. (172), e62508, doi:10.3791/62508 (2021).

View Video