Summary

半翅目肠道中植物病毒和昆虫载体蛋白的免疫荧光标记

Published: May 14, 2021
doi:

Summary

这种用于切除昆虫肠道中植物病毒蛋白和载体昆虫蛋白的免疫荧光标记的协议可用于研究病毒和载体昆虫之间的相互作用、昆虫蛋白功能和病毒传播的分子机制。

Abstract

自然界中的大多数植物病毒都是通过半翅目昆虫从一种植物传播到另一种植物的。在病毒传播方面效率高的媒介昆虫的高种群密度在田间病毒流行中起着关键作用。研究病毒-昆虫媒介相互作用可以促进我们对病毒传播和流行病的理解,目的是设计控制植物病毒及其媒介昆虫的新策略。免疫荧光标记已被广泛用于分析病原体和宿主之间的相互作用,并用于白背飞虱(WBPH,Sogatella furcifera),它有效地传播南方水稻黑条纹侏儒病毒(SRBSDV,斐济病毒属,呼肠孤科),以定位中肠上皮细胞中的病毒粒子和昆虫蛋白。使用激光扫描共聚焦显微镜,我们研究了中肠上皮细胞的形态特征,昆虫蛋白的细胞定位以及病毒粒子和昆虫蛋白的共定位。该协议可用于研究昆虫中的病毒活动,昆虫蛋白质的功能以及病毒与媒介昆虫之间的相互作用。

Introduction

大多数描述的植物病毒是由半翅目昆虫传播的,包括蚜虫、粉虱、叶蝉、飞虱和蓟马12。半翅目昆虫的刺吸口器刺穿植物组织以进食和分泌唾液,同时有效地传播病毒2。已经描述了植物病毒通过媒介昆虫的不同传播机制。这些包括非持久性、半持久性和持久性。持久性类型要么是非繁殖型,要么是繁殖型34,但对于这两种类型传播的病毒必须在昆虫的整个身体中移动。在持续繁殖模式下,病毒最初感染并在昆虫肠道的上皮细胞中复制,然后传播到不同的组织中,最终进入唾液腺,然后从那里它们可以在昆虫进食期间通过唾液引入植物56。持续传播的病毒通过不同的器官并在其昆虫载体中复制,这需要病毒和载体成分在不同阶段的特定相互作用78

病毒蛋白和昆虫蛋白必须相互作用,以促进病毒识别、感染、复制或传播的关键过程在媒介昆虫中910。虽然光学显微镜可用于观察昆虫的细胞结构,但它不能显示病毒粒子分布,病毒蛋白和昆虫蛋白的细胞定位或共定位,或昆虫组织和细胞的超微结构。免疫荧光标记首先由Coons等人通过标记特定的荧光素抗体在小鼠的吞噬细胞中进行,现在被广泛使用11。免疫荧光技术又称荧光抗体技术,是最早开发的免疫标记技术之一,是基于抗原与抗体之间的特异性结合反应1112。已知抗体首先用荧光素标记,荧光素用作检测细胞或组织中相应抗原的探针1314。荧光素标记的抗体与细胞或组织中的相应抗原结合后,探针在用激发波长照射并用荧光显微镜观察以定位抗原15时会发出明亮的荧光。

植物病毒的大多数媒介昆虫是半翅目。对植物病毒具有高传播效率的媒介昆虫种群密度较高,可导致病毒流行5。南方水稻黑纹矮病毒(SRBSDV,斐济病毒属,呼肠孤病毒科)是水稻最严重的病原菌之一,在东亚和东南亚的水稻种植区迅速蔓延,自2010年以来造成严重减产1617。白背飞虱(WBPH,Sogatella furcifera Horváth)的成虫和若虫以持续繁殖的方式高效将SRBSDV传播给水稻。现场研究表明,SRBSDV诱发的水稻黑条纹侏儒病的暴发通常与WBPH的大规模长距离迁移同时发生,这是SRBSDV流行的关键因素7818。囊泡相关膜蛋白7(VAMP7)是一种可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE),可通过囊泡融合介导物质的转运。VAMP7在体外与SRBSDV的外主要衣壳蛋白相互作用,这表明VAMP7可能与病毒传播密切相关16

在这里介绍的方案中,我们从病毒性WBPH中切除肠道,作为标记中肠上皮细胞中SRBSDV病毒粒子和VAMP7的例子16。作为病毒的初始入侵部位,中肠上皮在病毒感染、复制和传播中起着至关重要的作用。首先,我们详细介绍了从若虫和WBPH成虫中切除肠道的步骤。其次,我们使用特定的荧光素标记抗体来标记肠道上皮细胞中的SRBSDV病毒粒子和VAMP7。然后,我们通过激光扫描共聚焦显微镜观察上皮细胞以及病毒粒子和VAMP7的细胞位置。结果表明,SRBSDV病毒粒子和VAMP7在中肠上皮细胞的细胞质中可共定位,提示VAMP7的特异性功能可能与中肠上皮细胞病毒粒子的传播有关。

Protocol

1. 非病毒昆虫饲养 从稻田收集WBPH,并在28°C的培养箱中用防虫网覆盖的1L玻璃烧杯中收集WBPH,16小时光照和8小时黑暗。由于SRBSDV不通过卵传播,因此新孵化的若虫不会产生病毒性。 每周用毛笔轻轻地将烧杯中的昆虫刷入新鲜水稻幼苗的新烧杯中,直到WBPH若虫孵化。继续将这些孵化的非病毒若虫饲养到2或3龄。注意:小心刷牙,以避免WBPH从烧杯中飞出或损坏它们。 <p class…

Representative Results

图1说明了该协议中的所有步骤:昆虫饲养,病毒获取,肠道切除,免疫荧光标记和制作载玻片。 从成人中切除的WBPH内脏固定在4%(m / v)多聚甲醛中,用2%(v / v)Triton X-100透化,然后与Dylight 633鬼笔环肽10,18一起孵育。 图2 中的激光扫描共聚焦显微照片显示了用鬼笔环肽标记后切除的?…

Discussion

为了获得最佳结果,应考虑几个关键点。首先,病毒性昆虫在总种群中的高比例是必要的。虽然WBPH若虫和成虫对SRBSDV的最低AAP为5分17秒,但应允许昆虫以新鲜SRBSDV感染的水稻植物为食2天,以实现高达80%的采集效率。由于可以在80%的中肠18中检测到SRBSDV病毒粒子,因此我们在本协议中2 d AAP后2 d切除并标记了病毒性昆虫。其次,成虫和若虫的肠道与头部的唾液腺?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金(31630058 X.W.和31772134 W.L.)的资助。

Materials

3% Bull serum albumin (BSA) Coolaber SL1331 Dilute antibodies
Cover glass Solarbio YA0771-18*18mm For slide making
Dissecting microscope Beitja XTL-7045B1 For insect dissection
Laser scanning confocal microscope Zeiss Zeiss LSM880 Observe fluorescence signal
Microscope slides Solarbio ZBP-7105 For slide making
Mounting medium with 4'6-diamidino-2-phenylindole (DAPI) Abcam AB104139 Label cell necleus
Paraformaldehyde Sigma 158127 For tissues fixation
Phalloidin  Invitrogen A22284 Label actin of midgut epithiels
Triton X-100 Amresco 0290C484 For tissues permeation
Tweezers (5-SA) AsOne 6-7905-40 For insect dissection

Riferimenti

  1. Nault, L. R. Arthropod transmission of plant viruses: a new synthesis. Annals of the Entomological Society of America. 90 (5), 521-541 (1997).
  2. Mitchell, P. L. Heteroptera as vectors of plant pathogens. Neotropical Entomology. 88 (3), 519-545 (2004).
  3. Gautam, S., et al. Virus-virus interactions in a plant host and in a hemipteran vector: Implications for vector fitness and virus epidemics. Virus Research. 286, 198069 (2020).
  4. Ghanim, M. A review of the mechanisms and components that determine the transmission efficiency of Tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Research. 186, 47-54 (2014).
  5. Hogenhout, S. A., et al. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology. 46, 327-359 (2008).
  6. Whitfield, A. E., Falk, B. W., Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology. 479, 278-289 (2015).
  7. Wu, N., Zhang, L., Ren, Y., Wang, X. Rice black-streaked dwarf virus: from multiparty interactions among plant-virus-vector to intermittent epidemics. Molecular Plant Pathology. 21, 1007-1019 (2020).
  8. Zhang, L., Wu, N., Ren, Y., Wang, X. Insights into insect vector transmission and epidemiology of plant-infecting fijiviruses. Frontiers in Microbiology. 12, 628262 (2021).
  9. Liu, W., Hajano, J. U., Wang, X. New insights on the transmission mechanism of tenuiviruses by their vector insects. Current Opinion in Virology. 33, 13-17 (2018).
  10. Qin, F., et al. Invasion of midgut epithelial cells by a persistently transmitted virus is mediated by sugar transporter in its insect vector. PLOS Pathogens. 14, 1007201 (2018).
  11. Coons, A. H., Creech, H. J., Jones, R. N., Berliner, E. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. Journal of Immunology. 45, 159-170 (1942).
  12. Barnard, G. The development of fluorescence immunoassays. Progress in Clinical and Biological Research. 285, 15-37 (1988).
  13. Wang, W., et al. The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication. eLife. 6, 26591 (2017).
  14. Huo, Y., et al. Insect tissue-specific vitellogenin facilitates transmission of plant virus. PLoS Pathogens. 14 (2), 1006909 (2018).
  15. Zhang, Y., et al. TurboID-Based proximity labeling for in planta identification of protein-protein interaction networks. Journal of Visualized Experiments: JoVE. (159), e60728 (2020).
  16. Than, W., Qin, F. L., Liu, W. W., Wang, X. Analysis of Sogatella furcifera proteome that interact with P10 protein of southern rice black-streaked dwarf virus. Scientific Reports. 6, 32445 (2016).
  17. Pu, L., et al. Transmission characteristics of Southern rice black-streaked dwarf virus by rice planthoppers. Crop Protection. 41, 71-76 (2012).
  18. Jia, D., Chen, H., Mao, Q., Liu, Q., Wei, T. Restriction of viral dissemination from the midgut determines incompetence of small brown planthopper as a vector of southern rice black-streaked dwarf virus. Virus Research. 167, 404-408 (2012).
  19. Zhang, X., Zhang, L., Liu, W., Li, L., Wang, X. Preparation and application of the antibodies of Sogatella furcifera VAMP7 and Vti1a proteins in expressed in Escherichia coli. Plant Protection. 47, 55-60 (2021).
  20. Ammar, E. D., Nault, L. R., Rodriquez, J. G. . Internal morphology and ultrastructure of leafhoppers and planthoppers. , 1 (1985).
  21. Tsai, J., Perrier, J. L. Morphology of the digestive and reproductive systems of Dalbulus maidis and Graminella nigrifrons (Homoptera: Cicadellidae). Fla Entomology. 79, 563 (1996).
  22. Wei, T., Li, Y. Rice reoviruses in insect vectors. Annual Review of Phytopathology. 54, 99-120 (2016).
  23. Kruse, A., et al. Combining’omics and microscopy to visualize interactions between the Asian citrus psyllid vector and the Huanglongbing pathogen Candidatus Liberibacter asiaticus in the insect gut. PLoS ONE. 12, 0179531 (2017).
  24. Koga, R., Tsuchida, T., Fukatsu, T. Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. Applied Entomology and Zoology. 44, 281-291 (2009).
  25. King, R. S., Newmark, P. A. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Developmental Biology. 13, 8 (2013).

Play Video

Citazione di questo articolo
Zhang, L., Liu, W., Wang, X. Immunofluorescent Labeling of Plant Virus and Insect Vector Proteins in Hemipteran Guts. J. Vis. Exp. (171), e62605, doi:10.3791/62605 (2021).

View Video