Summary

ミトコンドリア病モデルのためのヒト脳オルガノイドの生成

Published: June 21, 2021
doi:

Summary

ヒト誘導多能性幹細胞由来の脳オルガノイドの生成とミトコンドリア病のモデル化におけるその使用に関する詳細なプロトコルについて述べています。

Abstract

ミトコンドリア病は、代謝の生まれ変わりエラーの最大のクラスを表し、現在不治です。これらの疾患は、根本的なメカニズムが解明されたままの神経発達上の欠陥を引き起こす。主要な障害は、患者に見られる早期発症神経障害を再現する効果的なモデルの欠如である。誘導多能性幹細胞(iPSC)の技術の進歩により、神経系の発達と組織に対する疾患の影響を調べるための3次元(3D)脳オルガノイドの生成が可能になります。これらの著者を含む研究者は、最近、ミトコンドリア障害をモデル化するためにヒト脳オルガノイドを導入しました。本論文は、ヒトiPSC由来の脳オルガノイドの堅牢な生成と、ミトコンドリアの生体エネルギープロファイリングおよびイメージング分析におけるその使用に関する詳細なプロトコルを報告する。これらの実験は、脳オルガノイドを使用して代謝および発達の機能不全を調査することを可能にし、ミトコンドリア病の神経病理学を解剖するための重要な情報を提供するかもしれない。

Introduction

ミトコンドリア病は、代謝の内生誤差の最大のクラス表します1.それらは、酸化リン酸化(OXPHOS)2、呼吸連鎖集合体、ミトコンドリアダイナミクス、ミトコンドリアDNA転写または複製含む異なるミトコンドリアプロセスを破壊する遺伝子変異によって引き起こされる。エネルギー要件を有する組織は、特にミトコンドリア機能不全4の影響を受ける。したがって、ミトコンドリア病の患者は、典型的には早期発症の神経学的症状を発症する。

現在、ミトコンドリア病の影響を受ける小児に対する治療法はない5。ミトコンドリア病の薬剤開発の大きな障害は、ヒト疾患コース6を再現する有効なモデルの欠如である。現在研究されている動物モデルのいくつかは、患者7に存在する神経学的欠陥を示さない。したがって、ミトコンドリア病の神経病理学の根底にあるメカニズムはまだ完全には理解されていない。

最近の研究では、ミトコンドリア病の影響を受けた患者からiPSCを生成し、これらの細胞を使用して患者特異的神経細胞を得た。例えば、ミトコンドリア病に伴う遺伝的欠陥、リー症候群、細胞内の収差を生じさせるのが分かっており、細胞内の生体エネルギー8,9、タンパク質合成10、及びカルシウム恒常性9,11収差を生じる。これらの報告は、ミトコンドリア病で起こる神経障害に関する重要な機械化的手がかりを提供し、これらの不治病の創薬への道を開いた12

しかし、2次元(2D)文化は、3D臓器13の建築の複雑さと地域組織の調査を可能にしません。このことから、患者固有のiPSCs14 に由来する3D脳オルガノイドを使用することで、研究者はさらなる重要な情報を得ることができ、それによってミトコンドリア病が神経系の発達および機能にどのような影響を与えるかを解剖するのに役立つ可能性がある15。ミトコンドリア病を調べるiPSC由来の脳オルガノイドを用いた研究は、ミトコンドリア病の神経発達成分を解明し始めている。

ミトコンドリア病に関連する変異を運ぶ脊髄オルガノイドは、ミトコンドリア脳症、乳酸アシドーシス、および脳卒中様エピソード症候群(MELAS)、神経新生の欠陥および遅れた運動ニューロン分化を示した16。ミトコンドリア病患者由来の皮質オルガノイドは、リー症候群、サイズの縮小、神経上皮芽発生の欠損、皮質アーキテクチャの喪失を示した17。リー症候群患者の脳オルガノイドは、疾患欠陥がミトコンドリア代謝にコミットできない神経前駆細胞のレベルで開始し、異常な神経細胞の分岐および形態形成引き起こすことを示した。したがって、神経前駆物質はミトコンドリア病の細胞治療標的を表し、ミトコンドリア機能を促進する戦略は神経系の機能的発達を支え得る。

脳オルガノイドの使用は、ミトコンドリア病の神経発達成分を明らかにするのに役立つかもしれません.ミトコンドリア病は、主に早期発症神経変性症として考えられる5。しかし、神経発達上の欠陥は、発達遅延および認知障害を含むミトコンドリア病の影響を受ける患者にも存在する19。患者固有の脳オルガノイドは、これらの側面に対処し、ミトコンドリア病が人間の脳の発達にどのような影響を与えるかを解明するのに役立つ可能性があります。ミトコンドリア機能障害は、アルツハイマー病、パーキンソン病、ハンチントン病などの他のより一般的な神経疾患においても病態的役割を果たす可能性がある4。したがって、脳オルガノイドを用いた神経発達におけるミトコンドリア欠損の影響を解明することは、これらの疾患の研究にも役立つかもしれない。本論文では、ミトコンドリア病の疾患モデル化に使用できる再現性脳オルガノイドを生成するための詳細なプロトコルについて説明する。

Protocol

注: 人間の iPSC を使用するには、倫理的な承認が必要な場合があります。本研究で用いたiPSCは、現地の倫理的承認(#2019-681)に従って健康なコントロール個人に由来した。すべての細胞培養手順は、ボンネットの下で移送する前に、慎重にすべての試薬および消耗品を消毒し、無菌細胞培養フードの下で行われなければなりません。分化に使用するヒトiPSCは、広範な培養で起こり得る潜在的な?…

Representative Results

ここで説明するプロトコルは、丸型オルガノイドの堅牢な生成を容易にする(図1A)。生成されたオルガノイドには、軸索(SMI312)および樹状突起(微小管関連タンパク質2(MAP2))に特異的なタンパク質マーカーを使用して視覚化できる成熟したニューロンが含まれています(図1B)。成熟したオルガノイドは、神経細胞(MA…

Discussion

本論文では、ヒトiPSC由来の脳オルガノイドの再現性のある生成と、ミトコンドリア病のモデル化に用いることを説明する。ここで説明するプロトコルは、以前に公開された work20 に基づいて変更されます。本プロトコルの大きな利点の1つは、各オルガノイドを足場マトリックスに手動で埋め込む必要がなされないことである。実際、マトリックス溶液は、細胞培養培地に単…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

ミリアム・ビュニングの技術サポートに感謝します。我々は、ドイツ・フォルシュングスゲミンシャフト(DFG)(PR1527/5-1からA.P.)、スパークとベルリン衛生研究所(BIH)(BIH検証資金からA.P.)、ユナイテッド・水戸からの支援を認める コンドリア病財団(UMDF)(リー症候群国際コンソーシアム補助金A.P.)、大学病院デュッセルドルフ(Forschungskommission UKDからA.P.)、ドイツ連邦教育研究省(BMBF)(e:バイオ若手研究者は、AZ 031L0211をA.P.に付与します。C.R.R.の研究室での作業は、DFG(FOR 2795 「ストレス下のシナプス」、Ro 2327/13-1)によってサポートされました。

Materials

2-mercaptoethanol Gibco 31350-010
Affinity Designer Serif (Europe) Ltd Layout software; Vector graphics editor
Alexa Fluor 488 donkey anti-guinea pig Sigma Aldrich SAB4600033-250UL 1:300
Alexa Fluor 488 donkey anti-mouse Thermo Fisher Scientific A-31571 1:300
Antimycin A Sigma Aldrich 1397-94-0
Anti-β-Tubulin III (TUJ-1) Sigma Aldrich T8578 1:2000
Argon Laser Melles Griot Any other Laser, e.g., diode lasers emitting 488 is fine, too
Ascorbic acid Sigma A92902
B-27 with Vitamin A Gibco 17504044
Bacto Agar Becton Dickinson 3% in PBS, store solution at -20 °C
BDNF Miltenyi Biotec 130-093-0811
cAMP Sigma D0627
Cell Star cell culture 6 well plate Greiner-Bio-One 657160
Chemically Defined Lipid Concentrate Gibco 11905031
Confocal laser scanning microscope C1 Nikon Microscope Solutions Modular confocal microscope system
Corning Matrigel Growth Factor Reduced (GFR) Basement membrane matrix, Phenol Red-free, LDEV-free Corning 356231 Matrix component
CyQUANT Cell Proliferation Assay Kit Thermo Fisher C7026
DMEM/F12 ThermoFisher 31330038
DMSO Sigma D2660-100ML
Donkey anti-goat Cy3 Merck Millipore AP180C 1:300
Donkey anti-mouse Cy3 Merck Millipore AP192C 1:300
Donkey anti-rabbit Cy3 Merck Millipore AP182C 1:300
DPBS Gibco 14190250
DS-Q1Mc camera Nikon Microscope Solutions
Eclipse 90i upright widefield microscope Nikon Microscope Solutions
Eclipse E 600FN upright microscope Nikon Microscope Solutions
Eclipse Ts2 Inverted Microscope Nikon Microsope Solutions
EZ-C1 Silver Version 3.91 Nikon Microscope Solutions Imaging software for confocal microscope
FCCP Sigma Aldrich 370-86-5
Fetal Bovine Serum Gibco 10270-106
GDNF Miltenyi Biotec 130-096-291
Glasgow MEM Gibco 11710-035
Glass Pasteur pipette Brand 747715 Inverted
Glutamax Gibco 35050-061
Helium-Neon Laser Melles Griot Every other Laser, e.g., diode lasers emitting 594 is fine, too
Heparin Merck H3149-25KU
HERACell 240i CO2 Incubator Thermo Scientific 51026331
Hoechst 33342 Invitrogen H3570 1:2500
Image J 1.53c Wayne Rasband National Institute of Health Image processing Software
Injekt Solo 10 mL/ Luer Braun 4606108V
Knockout Serum Replacement Gibco 10828010
Laser (407 nm) Coherent Any other Laser, e.g., diode lasers emitting 407 is fine, too
Map2 Synaptic Systems No. 188004 1:1000
Maxisafe 2030i
MEM NEAA Gibco 11140-050
mTeSR Plus Stemcell Technology 85850 iPSC medium
Multifuge X3R Centrifuge Thermo Scientific 10325804
MycoAlert Mycoplasma Detection Kit Lonza # LT07-218
N2 Supplement Gibco 17502-048
Needle for single usage (23G x 1” TW) Neoject 10016
NIS-Elements Aadvanced Research 3.2 Nikon Imaging software
Oligomycin A Sigma Aldrich 75351
Orbital Shaker Heidolph Unimax 1010 Heidolph 543-12310-00
PAP Pen Sigma Z377821-1EA To draw hydrophobic barrier on slides.
Papain Dissociation System kit Worthington LK003150
Paraformaldehyde Merck 818715 4% in PBS, store solution at -20 °C
Pasteur pipette 7mL VWR 612-1681 Graduated up to 3 mL
Penicillin-Streptomycin Gibco 15140-122
Plan Apo VC 20x / 0.75 air DIC N2  ∞/0.17 WD 1.0 Nikon Microscope Solutions Dry Microscope Objective
Plan Apo VC 60x / 1.40 oil DIC N2 ∞/0.17 WD 0.13 Nikon Microscope Solutions Oil Immersion Microscope Objective
Polystyrene Petri dish (100 mm) Greiner Bio-One 664161
Polystyrene round-bottom tube with cell-strainer cap (5 mL) Falcon 352235
Potassium chloride Roth 6781.1
ProLong Glass Antifade Moutant Invitrogen P36980
Qualitative filter paper VWR 516-0813
Rock Inhibitior Merck SCM075
Rotenone Sigma 83-794
S100β Abcam Ab11178 1:600
SB-431542 Cayman Chemical Company 13031
Scalpel blades Heinz Herenz Hamburq 1110918
SMI312 Biolegend 837904 1:500
Sodium bicarbonate Merck/Sigma 31437-1kg-M
Sodium chloride Roth 3957
Sodium dihydrogen phosphate Applichem 131965
Sodium Pyruvate Gibco 11360070
SOX2 Santa Cruz Biotechnology Sc-17320 1:100
StemPro Accutase Cell Dissociation Reagent Gibco/StemPro A1110501 Reagent A
Super Glue Gel UHU 63261 adhesive gel
SuperFrost Plus VWR 631-0108
Syringe for single usage (1 mL) BD Plastipak 300015
TB2 Thermoblock Biometra
TC Plate 24 Well Sarstedt 83.3922
TC Plate 6 Well Sarstedt 83.392
TGFbeta3 Miltenyi Biotec 130-094-007
Tissue Culture Hood ThermoFisher 51032711
TOM20 Santa Cruz Biotechnology SC-11415 1:200
Triton-X Merck X100-5ML
UltraPure 0.5M EDTA Invitrogen 15575020
Vibratome Microm HM 650 V Thermo Scientific Production terminated, any other adjustable microtome is fine, too.
Vibratome Wilkinson Classic Razor Blade Wilkinson Sword 70517470
Whatman Benchkote Merck/Sigma 28418852
Wnt Antagonist I EMD Millipore Corp 3378738
XF 96 extracellular flux analyser Seahorse Bioscience 100737-101
XF Assay DMEM Medium Seahorse Bioscience 103680-100
XF Calibrant Solution Seahorse Bioscience 100840-000
XFe96 FluxPak (96-well microplate) Seahorse Bioscience 102416-100

Riferimenti

  1. Koopman, W. J., Willems, P. H., Smeitink, J. A. Monogenic mitochondrial disorders. New England Journal of Medicine. 366 (12), 1132-1141 (2012).
  2. Gorman, G. S., et al. Mitochondrial diseases. Nature Review Disease Primers. 2, 16080 (2016).
  3. Vafai, S. B., Mootha, V. K. Mitochondrial disorders as windows into an ancient organelle. Nature. 491 (7424), 374-383 (2012).
  4. Carelli, V., Chan, D. C. Mitochondrial DNA: impacting central and peripheral nervous systems. Neuron. 84 (6), 1126-1142 (2014).
  5. Russell, O. M., Gorman, G. S., Lightowlers, R. N., Turnbull, D. M. Mitochondrial diseases: hope for the future. Cell. 181 (1), 168-188 (2020).
  6. Weissig, V. Drug development for the therapy of mitochondrial diseases. Trends in Molecular Medicine. 26 (1), 40-57 (2020).
  7. Tyynismaa, H., Suomalainen, A. Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Reports. 10 (2), 137-143 (2009).
  8. Ma, H., et al. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature. 524 (7564), 234-238 (2015).
  9. Galera-Monge, T., et al. Mitochondrial dysfunction and calcium dysregulation in Leigh syndrome induced pluripotent stem cell derived neurons. International Journal of Molecular Science. 21 (9), 3191 (2020).
  10. Zheng, X., et al. Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. Elife. 5, 13378 (2016).
  11. Lorenz, C., et al. Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell. 20 (5), 659-674 (2017).
  12. Inak, G., et al. Concise review: induced pluripotent stem cell-based drug discovery for mitochondrial disease. Stem Cells. 35 (7), 1655-1662 (2017).
  13. Chiaradia, I., Lancaster, M. A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nature Neuroscience. 23 (12), 1496-1508 (2020).
  14. Lancaster, M. A., Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocol. 9 (10), 2329-2340 (2014).
  15. Liput, M., et al. Tools and approaches for analyzing the role of mitochondria in health, development and disease using human cerebral organoids. Developmental Neurobiology. , (2021).
  16. Winanto, K. Z. J., Soh, B. S., Fan, Y., Ng, S. Y. Organoid cultures of MELAS neural cells reveal hyperactive Notch signaling that impacts neurodevelopment. Cell Death and Disease. 11 (3), 182 (2020).
  17. Romero-Morales, A. I., et al. Human iPSC-derived cerebral organoids model features of Leigh Syndrome and reveal abnormal corticogenesis. bioRxiv. , (2020).
  18. Inak, G., et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nature Communications. 12 (1), 1929 (2021).
  19. Falk, M. J. Neurodevelopmental manifestations of mitochondrial disease. Journal of Developmental & Behavioral Pediatrics. 31 (7), 610-621 (2010).
  20. Velasco, S., et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 570 (7762), 523-527 (2019).
  21. Pfiffer, V., Prigione, A. Assessing the bioenergetic profile of human pluripotent stem cells. Methods in Molecular Biology. 1264, 279-288 (2015).
  22. Ludikhuize, M. C., Meerlo, M., Burgering, B. M. T., Colman, R. M. J. Protocol to profile the bioenergetics of organoids using Seahorse. STAR Protocols. 2 (1), 100386 (2021).
  23. Menacho, C., Prigione, A. Tackling mitochondrial diversity in brain function: from animal models to human brain organoids. International Journal of Biochemestry & Cell Biology. 123, 105760 (2020).
  24. Del Dosso, A., Urenda, J. P., Nguyen, T., Quadrato, G. Upgrading the physiological relevance of human brain organoids. Neuron. 107 (6), 1014-1028 (2020).
check_url/it/62756?article_type=t

Play Video

Citazione di questo articolo
Le, S., Petersilie, L., Inak, G., Menacho-Pando, C., Kafitz, K. W., Rybak-Wolf, A., Rajewsky, N., Rose, C. R., Prigione, A. Generation of Human Brain Organoids for Mitochondrial Disease Modeling. J. Vis. Exp. (172), e62756, doi:10.3791/62756 (2021).

View Video