Summary

恒河猴脑脊液中Aβ和Tau水平重复经颅磁刺激的试点研究

Published: September 03, 2021
doi:

Summary

在这里,我们描述了一项试点研究的程序,以探索不同频率(1 Hz / 20 Hz / 40 Hz)的重复经颅磁刺激对恒河猴脑脊液中Aβ和tau代谢的影响。

Abstract

先前的研究表明,非侵入性闪烁的光和听觉音调刺激可能会影响大脑中的Aβ和tau代谢。作为一种非侵入性技术,重复经颅磁刺激(rTMS)已被应用于神经退行性疾病的治疗。本研究探讨了rTMS对恒河猴脑脊液(CSF)中Aβ和tau水平的影响。这是一项单盲、自我控制的研究。使用三种不同的频率(低频,1 Hz;高频,20 Hz和40 Hz)的rTMS来刺激恒河猴的双侧背外侧前额叶皮层(DLPFC)。使用导管插入术收集脑脊液。所有样品均进行液体芯片检测以分析CSF生物标志物(Aβ42Aβ42 / Aβ40,tTau,pTau)。脑脊液生物标志物水平在rTMS刺激后随时间变化。刺激后,脑脊液中的Aβ42 水平在所有频率(1 Hz,20 Hz和40 Hz)下均呈上升趋势,高频(p<0.05)的差异比低频差异更大。

高频rTMS后,脑脊液总Tau(tTau)水平在rTMS后时间点(p<0.05)立即升高,并逐渐下降24 h。此外,结果表明,磷酸化Tau(pTau)的水平在40 Hz rTMS(p<0.05)后立即增加。Aβ42/Aβ40 的比率在1 Hz和20 Hz时呈上升趋势(p<0.05)。低频(1 Hz)刺激的tau水平没有显着差异。因此,rTMS的高频(20 Hz和40 Hz)可能对恒河猴脑脊液中的Aβ和tau水平产生积极影响,而低频(1 Hz)rTMS只能影响Aβ水平。

Introduction

淀粉样蛋白β(Aβ)和tau是重要的脑脊液生物标志物。Aβ由42个氨基酸(Aβ1-42)组成,是经β和γ分泌酶水解的跨膜淀粉样蛋白前体蛋白(APP)的产物1Aβ1-42 由于其溶解度特性,可能在大脑中聚集成细胞外淀粉样蛋白斑块12。Tau 是一种微管相关蛋白,主要存在于轴突中,参与顺行轴突转运3。异常的tau过度磷酸化主要是由激酶和磷酸酶之间的不平衡引起的,导致tau从微管中脱离并形成神经原纤维缠结(NFT)1。tau在脑脊液中的浓度增加,因为tau和磷酸化的tau蛋白(pTau)在神经退行过程中被释放到细胞外空间。先前的研究表明,脑脊液生物标志物与阿尔茨海默病(AD)大脑的三种主要病理变化有关:细胞外淀粉样蛋白斑块,细胞内NFT形成和神经元损失4。Aβ 和 tau 浓度异常出现在 AD 的早期阶段,因此可进行早期 AD 诊断56

2016年,Tsai等人发现,非侵入性光闪烁(40 Hz)降低了预沉积小鼠视觉皮层中Aβ1-40Aβ1-42 的水平7。最近,他们进一步报告说,听觉音调刺激(40 Hz)改善了识别和空间记忆,降低了5XFAD小鼠海马体和听觉皮层(AC)中的淀粉样蛋白水平,并降低了P301S tauopathy模型8中的pTau浓度。这些结果表明,非侵入性技术可能会影响Aβ和tau代谢。

作为一种非侵入性工具,经颅磁刺激(TMS)可以电刺激神经组织,包括脊髓、周围神经和大脑皮层9。此外,它可以改变大脑皮层在受刺激部位和功能连接中的兴奋性。因此,TMS已被用于治疗神经退行性疾病以及预后和诊断测试。TMS中最常见的临床干预形式rTMS可以诱导皮层激活,改变皮层的兴奋性,并调节认知/运动功能。

据报道,20 Hz rTMS对包括谷氨酸和Aβ在内的氧化应激源具有 体外 神经保护作用,并改善了小鼠单克隆海马HT22细胞的整体活力10。在1 Hz rTMS刺激后,海马体中β位点APP切割酶1,APP及其C端片段显着减少。值得注意的是,海马CA1的长期增强,空间学习和记忆的损害被逆转1112。Bai等人在工作记忆测试中研究了rTMS对Aβ诱导的γ振荡功能障碍的影响。他们得出结论,rTMS可以逆转Aβ诱导的功能障碍,从而对工作记忆产生潜在的益处13。然而,关于rTMS对tau代谢的影响以及rTMS前后脑脊液中Aβ和tau的动态变化的报道很少。该协议描述了在不同频率(低频,1 Hz;高频,20 Hz和40 Hz)下rTMS对恒河猴CSF中Aβ和tau水平的影响的程序。

Protocol

所有实验均根据中华人民共和国科技部制定的《实验动物护理和使用指南》以及《巴塞尔宣言》的原则进行。四川大学华西医院动物护理委员会(中国成都)批准。 图1 显示了这里使用的单盲自控研究设计。 1. rTMS 设备 使用8形磁场刺激线圈执行rTMS刺激。 2. 动物 将雄性恒河猴(玛卡卡穆拉塔,5公斤,5岁?…

Representative Results

结果表明,rTMS可以影响恒河猴脑脊液中的Aβ和tau水平。在不同频率(1 Hz,20 Hz和40 Hz)下进行rTMS刺激后,脑脊液生物标志物水平随时间变化。 Aβ42 和 Aβ42/Aβ40如图4A所示,在1 Hz rTMS刺激后,Aβ42水平在24 h内逐渐升高(p<0.05),并在冲洗期后?…

Discussion

Aβ1-42是AD的一种公认的生物标志物,是一种与大脑中Aβ代谢和淀粉样蛋白斑块形成相关的CSF核心生物标志物,已广泛应用于临床试验和临床26。最近的研究表明,CSF Aβ42 / Aβ40比率是AD的更好的诊断生物标志物,而不是单独的Aβ42,因为它是AD型病理学的更好指标2728。Tau和pTau蛋白在神经退行过程中释放…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者要感谢四川绿屋生物科技有限公司提供的猴子椅和其他相关设备。这项研究没有得到公共,商业或非营利部门任何资助机构的具体资助。

Materials

Anesthesia Puncture Kit for Single Use Weigao, Shandong, China
CCY-I magnetic field stimulator YIRUIDE MEDICAL, Wuhan, China
GraphPad Prism version 7.0 GraphPad Software, Inc., San Diego, CA, USA
Human Amyloid Beta and Tau Magnetic Bead Panel EMD Millipore Corporation, Billerica, MA 01821 USA liquid chip detection
MILLIPLEX Analyst 5.1 EMD Millipore Corporation, Billerica, MA 01821 USA
Monkey Chair HH-E-1 Brainsight, Cambridge, MA 02140 USA
Zoletil 50 Virbac, France zolazepam–tiletamine

Riferimenti

  1. Niemantsverdriet, E., Valckx, S., Bjerke, M., Engelborghs, S. Alzheimer’s disease CSF biomarkers: clinical indications and rational use. Acta Neurologica Belgica. 117 (3), 591-602 (2017).
  2. Ohnishi, S., Takano, K. Amyloid fibrils from the viewpoint of protein folding. Cellular and Molecular Life Sciences. 61 (5), 511-524 (2004).
  3. Hernandez, F., Avila, J. Tauopathies. Cellular and Molecular Life Sciences. 64 (17), 2219-2233 (2007).
  4. Ballard, C., et al. Alzheimer’s disease. Lancet. 377 (9770), 1019-1031 (2011).
  5. De Meyer, G., et al. Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Archives of Neurology. 67 (8), 949-956 (2010).
  6. Jansen, W. J., et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 313 (19), 1924-1938 (2015).
  7. Iaccarino, H. F., et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 540 (7632), 230-235 (2016).
  8. Martorell, A. J., et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell. 177 (2), 256-271 (2019).
  9. Kobayashi, M., Pascual-Leone, A. Transcranial magnetic stimulation in neurology. Lancet Neurology. 2 (3), 145-156 (2003).
  10. Post, A., Muller, M. B., Engelmann, M., Keck, M. E. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. European Journal of Neuroscience. 11 (9), 3247-3254 (1999).
  11. Huang, Z., et al. Low-frequency repetitive transcranial magnetic stimulation ameliorates cognitive function and synaptic plasticity in APP23/PS45 mouse model of Alzheimer’s disease. Frontiers in Aging Neuroscience. 9, 292 (2017).
  12. Tan, T., et al. Low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Abeta(1-42)-mediated memory deficits in rats. Experimental Gerontology. 48 (8), 786-794 (2013).
  13. Bai, W., et al. Repetitive transcranial magnetic stimulation reverses Abeta1-42-induced dysfunction in gamma oscillation during working memory. Currrent Alzheimer Research. 15 (6), 570-577 (2018).
  14. Heo, J. H., et al. Spatial distribution of glucose hypometabolism induced by intracerebroventricular streptozotocin in monkeys. Journal of Alzheimers Disease. 25 (3), 517-523 (2011).
  15. Lee, Y., et al. Insulin/IGF signaling-related gene expression in the brain of a sporadic Alzheimer’s disease monkey model induced by intracerebroventricular injection of streptozotocin. Journal of Alzheimers Disease. 38 (2), 251-267 (2014).
  16. Zhang, Y., et al. Temporal analysis of blood-brain barrier disruption and cerebrospinal fluid matrix metalloproteinases in rhesus monkeys subjected to transient ischemic stroke. Journal of Cerebral Blood Flow and Metabolism. 37 (8), 2963-2974 (2017).
  17. Liao, X., et al. Repetitive transcranial magnetic stimulation as an alternative therapy for cognitive impairment in Alzheimer’s disease: a meta-analysis. Journal of Alzheimers Disease. 48 (2), 463-472 (2015).
  18. Hwang, J. M., Kim, Y. H., Yoon, K. J., Uhm, K. E., Chang, W. H. Different responses to facilitatory rTMS according to BDNF genotype. Clinical Neurophysiology. 126 (7), 1348-1353 (2015).
  19. Uhm, K. E., Kim, Y. H., Yoon, K. J., Hwang, J. M., Chang, W. H. BDNF genotype influence the efficacy of rTMS in stroke patients. Neuroscience Letters. 594, 117-121 (2015).
  20. Ahmed, M. A., Darwish, E. S., Khedr, E. M., El Serogy, Y. M., Ali, A. M. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. Journal of Neurology. 259 (1), 83-92 (2012).
  21. Tan, T., et al. Low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ(1-42)-mediated memory deficits in rats. Experimental Gerontology. 48 (8), 786-794 (2013).
  22. Cotelli, M., et al. Improved language performance in Alzheimer disease following brain stimulation. Journal of Neurology Neurosurgery and Psychiatry. 82 (7), 794-797 (2011).
  23. Dobrowolska, J. A., et al. CNS amyloid-beta, soluble APP-alpha and -beta kinetics during BACE inhibition. Journal of Neuroscience. 34 (24), 8336-8346 (2014).
  24. Sankaranarayanan, S., et al. First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates. Journal of Pharmacology Experimental Therapeutics. 328 (1), 131-140 (2009).
  25. Schoenfeld, H. A., et al. The effect of angiotensin receptor neprilysin inhibitor, sacubitril/valsartan, on central nervous system amyloid-beta concentrations and clearance in the cynomolgus monkey. Toxicology and Applied Pharmacology. 323, 53-65 (2017).
  26. Blennow, K., Mattsson, N., Scholl, M., Hansson, O., Zetterberg, H. Amyloid biomarkers in Alzheimer’s disease. Trends in Pharmacological Sciences. 36 (5), 297-309 (2015).
  27. Janelidze, S., et al. CSF Abeta42/Abeta40 and Abeta42/Abeta38 ratios: better diagnostic markers of Alzheimer disease. Annals of Clinical and Translational Neurology. 3 (3), 154-165 (2016).
  28. Vogelgsang, J., Wedekind, D., Bouter, C., Klafki, H. W., Wiltfang, J. Reproducibility of Alzheimer’s disease cerebrospinal fluid-biomarker measurements under clinical routine conditions. Journal of Alzheimers Disease. 62 (1), 203-212 (2018).
  29. Dubois, B., et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurology. 13 (6), 614-629 (2014).
  30. Schuff, N., et al. MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain. 132, 1067-1077 (2009).
  31. Stricker, N. H., et al. CSF biomarker associations with change in hippocampal volume and precuneus thickness: implications for the Alzheimer’s pathological cascade. Brain Imaging and Behavior. 6 (4), 599-609 (2012).
  32. Cirrito, J. R., et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron. 48 (6), 913-922 (2005).
  33. Duits, F. H., et al. Performance and complications of lumbar puncture in memory clinics: Results of the multicenter lumbar puncture feasibility study. Alzheimers & Dementia. 12 (2), 154-163 (2016).
  34. Engelborghs, S., et al. Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimers Dement. 8, 111-126 (2017).
  35. Costerus, J. M., Brouwer, M. C., van de Beek, D. Technological advances and changing indications for lumbar puncture in neurological disorders. Lancet Neurology. 17 (3), 268-278 (2018).
  36. Wang, Y. F., et al. Cerebrospinal fluid leakage and headache after lumbar puncture: a prospective non-invasive imaging study. Brain. 138, 1492-1498 (2015).
  37. Schmidt, F., et al. Detection and quantification of beta-amyloid, pyroglutamyl Abeta, and tau in aged canines. Journal of Neuropathology and Experimental Neurology. 74 (9), 912-923 (2015).
check_url/it/63005?article_type=t

Play Video

Citazione di questo articolo
Liao, L., Zhang, Y., Lau, B. W., Wu, Q., Fan, Z., Gao, Q., Zhong, Z. A Pilot Study on the Repetitive Transcranial Magnetic Stimulation of Aβ and Tau Levels in Rhesus Monkey Cerebrospinal Fluid. J. Vis. Exp. (175), e63005, doi:10.3791/63005 (2021).

View Video