Summary

监测成人 果蝇 肠道的肠道酸化

Published: October 11, 2021
doi:

Summary

在这里,我们提出了一种标准化的方案,用于监测 黑腹果蝇 的肠道酸化,并具有最佳输出。我们首先将此方案用于 黑色果蝇 的肠道酸化监测,然后证明其在非模型 果蝇 物种中的使用。

Abstract

果蝇中肠由多个区域组成,每个区域都由执行肠道正常功能所需的独特生理功能的细胞组成。一个这样的区域,铜细胞区域(CCR),定位于中肠中部,部分由一组称为铜电池的细胞组成。铜细胞参与胃酸分泌,这是一种进化保守的过程,其确切的作用知之甚少。本文描述了目前用于测定成年 果蝇 肠道酸化的方案的改进,并证明它可以用于其他种类的苍蝇。特别是,本文表明肠道酸化取决于苍蝇的营养状况,并提出了基于这一新发现的方案。总体而言,该协议证明了研究 果蝇 铜细胞的潜在有用性,以揭示肠道酸化机制背后的一般原理。

Introduction

在昆虫肠道中,铜细胞与哺乳动物胃的产酸胃壁细胞(也称为oxyntic)具有细胞和功能相似性。这组细胞将酸释放到肠腔中。酸分泌和解剖学的功能在进化上是保守的。排放的酸的主要成分是盐酸和氯化钾。细胞中酸形成的化学机制取决于碳酸酐酶。这种酶从CO2 和水中产生碳酸氢根离子,释放出一个羟基离子,然后通过质子泵排入腔内以换取钾。氯离子和钾离子通过电导通道输送到管腔中,形成盐酸和氯化钾,氯化钾是胃液的主要成分1234

虽然酸形成的机制已经很清楚了,但对调节酸分泌的生理机制知之甚少。开发这种方法的目的是帮助更好地描绘协调酸形成和分泌的细胞途径,并确定酸在介导肠道生理学和稳态中的作用。开发和使用该技术背后的基本原理是提供一种一致且可靠的方法来研究 果蝇 和非模型生物的肠道酸化过程。虽然目前存在用于测定 果蝇 中谷酸化的标准方案256,但在使用该方案研究铜细胞功能时,观察到野生型(WT)苍蝇酸化程度的显着变异性。为了理解这种观察到的变异性的基础并获得一致的结果,如下所述优化了标准协议的几个方面。

Protocol

注:标准实验室线俄勒冈R被用作WT对照。所有苍蝇在标准玉米粉 – 糖蜜培养基(含有糖蜜,琼脂,酵母,玉米粉,癡脂,丙酸和水)下在室温下以12/12小时的浅/暗昼夜节律饲养。 1. 检测准备 在CO2 麻醉下收集雌性苍蝇(0-2天大,非处女),并让它们在实验前至少在标准玉米粉食物中恢复3天。 在室温(〜23°C)下将苍蝇饿死在含有用〜2mL去?…

Representative Results

我们使俄勒冈R雌性苍蝇挨饿超过20小时,然后喂它们补充了BPB(2%)的食物约12小时,如前所述7,8,9,10,11。溴酚蓝(BPB)是一种pH传感染料。它在pH 3.0时从黄色变为pH 4.6及以上时变为蓝色。如前所述,在肠道解剖后,发现一些苍蝇产生酸,如肠道CCR中的黄色所示(<strong cl…

Discussion

该协议中的一个关键步骤是正确解剖肠道,以可视化酸化表型的CCR。当肠道完好无损时,从铜细胞释放的酸被限制在CCR中。然而,在解剖过程中,由肠道破裂引起的泄漏可导致酸从CCR扩散,并导致肠道被错误地评为酸化阴性。此外,指示酸化的黄色在解剖后5-10分钟内褪色,强调了分离后不久对肠道酸化表型进行评分的重要性。最后,目前的方案78

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者承认,对作者实验室工作的支持由HHMI教师学者奖和UT西南医学中心儿童研究所的启动资金提供。

Materials

Bromophenol blue Sigma-Aldrich B0126
cellSens software Olympus Image aqusition (https://www.olympus-lifescience.com/en/software/cellsens)
D. simulans Drosophila Species Stock Center at the University of California Riverside California1 (https://www.drosophilaspecies.com/)
D. erecta Drosophila Species Stock Center at the University of California Dere cy1(https://www.drosophilaspecies.com/)
D. pseudoobscura Drosophila Species Stock Center at the University of California Eugene, Oregon(https://www.drosophilaspecies.com/)
D. mojavensis Drosophila Species Stock Center at the University of California Chocolate Mountains, California (https://www.drosophilaspecies.com/)
Forceps Inox Biology Catalog# 11252-20
Fuji Fuji Image processing (https://hpc.nih.gov/apps/Fiji.html)
Glass slide VWR Catalog#16005-108
Kim wipes Tissue Kimtech
Microscope and camera Olympus SZ61 microscope equipped with an Olympus D-27 digital camera Imaging
Oregon R Bloomington Drosophila Stock (https://bdsc.indiana.edu/ # 2376)
Petri dishes Fisher Scientific Catalog #FB0875713A
Phosphate-buffered Saline (PBS) HyClone Catalog # SH30258.01
Stereomicroscope Olympus SZ51 Visual magnification

Riferimenti

  1. Hollander, F. The composition and mechanism of formation of gastric acid secretion. Science. 110 (2846), 57-63 (1949).
  2. Forte, J. G., Zhu, L. Apical recycling of the gastric parietal cell H, K-ATPase. Annual Review of Physiology. 72, 273-296 (2010).
  3. Samuelson, L. C., Hinkle, K. L. Insights into the regulation of gastric acid secretion through analysis of genetically engineered mice. Annual Review of Physiology. 65, 383-400 (2003).
  4. Yao, X., Forte, J. G. Cell biology of acid secretion by the parietal cell. Annual Review of Physiology. 65, 103-131 (2003).
  5. Driver, I., Ohlstein, B. Specification of regional intestinal stem cell identity during Drosophila metamorphosis. Development. 141 (9), 1848-1856 (2014).
  6. Overend, , et al. Molecular mechanism and functional significance of acid generation in the Drosophila midgut. Scientific Reports. 6, 27242 (2016).
  7. Shanbhag, S., Tripathi, S. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. Journal of Experimental Biology. 212, 1731-1744 (2009).
  8. Dubreuil, R. R. Copper cells and stomach acid secretion in the Drosophila midgut. International Journal of Biochemistry and Cell Biology. 36 (5), 745-752 (2004).
  9. Martorell, , et al. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut. PLoS ONE. 9 (2), 88413 (2014).
  10. Strand, M., Micchelli, C. A. Regional control of Drosophila gut stem cell proliferation: EGF establishes GSSC proliferative set point & controls emergence from quiescence. PLoS One. 8 (11), 80608 (2013).
  11. Storelli, G., et al. Drosophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lactobacillus plantarum. Cell Metabolism. 27 (2), 362-377 (2018).
  12. Abu, F., et al. Communicating the nutritional value of sugar in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 115 (12), 2829-2838 (2018).
  13. Blecker, U., Gold, B. D. Gastritis and ulcer disease in childhood. European Journal of Pediatrics. 158 (7), 541-546 (1999).
check_url/it/63141?article_type=t

Play Video

Citazione di questo articolo
Abu, F., Ohlstein, B. Monitoring Gut Acidification in the Adult Drosophila Intestine. J. Vis. Exp. (176), e63141, doi:10.3791/63141 (2021).

View Video