Summary

基于斑马鱼和青鳉鱼的成年视锥刺伤损伤模型的再生能力比较分析

Published: February 10, 2022
doi:

Summary

描述了成年斑马鱼的机械脑损伤模型,以研究调节其高再生能力的分子机制。该方法解释了在多种小鱼的视顶上造成刺伤,以使用荧光免疫染色评估再生反应。

Abstract

虽然斑马鱼具有卓越的中枢神经系统(CNS)再生能力,但青鳉鱼具有较低的CNS再生能力。在斑马鱼和青鳉鱼的成年视顶中建立了脑损伤模型,并进行了比较组织学和分子分析,以阐明调节这些鱼类中该组织高再生能力的分子机制。这里提出了成人视顶的刺伤损伤模型,使用针头和组织学分析来分析神经干细胞(NSC)的增殖和分化。手动将针插入视顶的中心区域,然后对鱼进行心内灌注,并解剖它们的大脑。然后对这些组织进行冷冻切片,并使用针对适当的NSC增殖和分化标志物的免疫染色进行评估。这种顶盖损伤模型在斑马鱼和青鳉鱼中提供了可靠且可重复的结果,可以比较受伤后的NSC反应。这种方法可用于小型硬骨鱼,包括斑马鱼、青鳉鱼和非洲鳉鱼,使我们能够比较它们的再生能力并研究独特的分子机制。

Introduction

与其他哺乳动物相比,斑马鱼(Danio rerio)具有更高的中枢神经系统(CNS)再生能力123最近,为了更好地了解这种再生能力增加的分子机制,已经使用下一代测序技术对组织再生进行了比较分析456。斑马鱼和四足动物的大脑结构完全不同789这意味着已经开发了几种使用具有相似大脑结构和生物学特征的小鱼的脑损伤模型,以促进对有助于增加再生能力的潜在分子机制的研究。

此外,青鳉鱼(Oryzias latipes)是一种受欢迎的实验动物,与斑马鱼相比,心脏和神经元再生能力低10111213斑马鱼和青鳉鱼具有相似的大脑结构和成体神经干细胞(NSC)的生态位14151617在斑马鱼和青鳉鱼中,视顶包括两种类型的NSC,神经上皮样干细胞和径向神经胶质细胞(RGC)1518。先前开发了成年斑马鱼视顶的刺伤损伤,该模型用于研究调节这些动物脑再生的分子机制1920212223。这种年轻成年斑马鱼刺伤损伤模型诱导了RGC192425的再生神经发生。这种视顶刺伤是一种稳健且可重复的方法131920,21,22,23,2425当相同的损伤模型应用于成年青鳉鱼时,通过对损伤后RGC增殖和分化的比较分析,揭示了青鳉鱼视顶RGCs的低神经源性能力13

木乃伊模型26 中也开发了视盖中的刺伤损伤模型,但与端脑损伤27 相比,顶盖损伤的细节尚未得到充分记录。使用斑马鱼和青鳉鱼在视顶的刺伤损伤可以研究具有不同再生能力的物种之间的差异细胞反应和基因表达。该协议描述了如何使用注射针在视顶进行刺伤。这种方法可以应用于斑马鱼和青鳉鱼等小鱼。本文介绍了使用荧光免疫组织化学和冷冻切片进行组织学分析以及细胞增殖和分化分析的样品制备过程。

Protocol

所有实验方案均由国家先进工业科学技术研究所的机构动物护理和使用委员会批准。斑马鱼和青鳉鱼按照标准程序进行饲养28. 1.成人视顶刺伤 准备0.4%(w / v)三卡因储备溶液进行麻醉。对于 100 mL 储备溶液,将 400 mg 甲磺酸三卡因(参见 材料表)溶解在 90 mL 蒸馏水中,并使用 1 M Tris HCl 缓冲液 (pH 9.0) 将 pH 值调节至 7.0。调…

Representative Results

使用针插入右半球的视顶刺伤(图1,图 4A和 图5A)诱导各种细胞反应,包括径向神经胶质细胞(RGC)增殖和新生神经元的产生。同样,斑马鱼和青鳉鱼的老年种群被用来抵消再生反应中的任何衰老影响。然后对冷冻切片进行荧光免疫染色,分析斑马鱼和青鳉鱼顶盖损伤后的RGC增殖和分化(图4-5?…

Discussion

这里描述了一组方法,可用于利用针头诱导视盖中的刺伤,以促进脑损伤后RGC增殖和分化的评估。针头介导的刺伤是一种简单、高效实施的方法,可以使用一套标准工具应用于许多实验样品。斑马鱼大脑几个区域的刺伤损伤模型已经开发出来31929。视顶是大脑中最大的部分之一,易于操作。此外,与端脑相比,视顶中的大?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了JSPS KAKENHI授权号18K14824和21K15195以及日本AIST的内部资助的支持。

Materials

10 mL syringe TERUMO SS-10ESZ
1M Tris-HCl (pH 9.0) NIPPON GENE 314-90381
30 G needle Dentronics HS-2739A
4% Paraformaldehyde Phosphate Buffer Solution Wako 163-20145
Aluminum block 115 x 80 x 37 mm (W x D x H) is enough size to freeze 6 cryomolds
Anti-BLBP Millipore ABN14 1:500
Anti-BrdU Abcam ab1893 1:500
Anti-HuC Invitrogen A21271 1:100
Anti-PCNA Santa Cruz Biotechnology sc-56 1:200
Brmodeoxyuridine Wako 023-15563
Confocal microscope C1 plus Nikon
Cryomold Sakura Finetek Japan 4565 10 x 10 x 5 mm (W x D x H)
Cryostat Leica CM1960
Danio rerio WT strains RW
Extension tube TERUMO SF-ET3520
Fluoromount (TM) Aqueous Mounting Medium, for use with fluorescent dye-stained tissues SIGMA-ALDRICH F4680-25ML
Forceps DUMONT 11252-20
Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 488 Invitrogen A32723
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 546 Invitrogen A11035
Hoechst 33342 solution Dojindo 23491-52-3
Hydrochloric Acid Wako 080-01066
Incubation Chamber for 10 slides Dark Orange COSMO BIO CO., LTD. 10DO
MAS coat sliding glass Matsunami glass MAS-01
Micro cover glass Matsunami glass C024451
Microscopy Nikon SMZ745T
Normal horse serum blocking solution VECTOR LABRATORIES S-2000-20
O.C.T Compound Sakura Finetek Japan 83-1824
Oryzias latipes WT strains Cab
PAP Pen Super-Liquid Blocker DAIDO SANGYO PAP-S
Phosphate Buffered Saline (PBS) Tablets, pH 7.4 TaKaRa T9181
Styrofoam tray 100 x 100 x 10 mm (W x D x H) styrofoam sheet is available as tray
Sucrose Wako 196-00015 30 % (w/v) Sucrose in PBS
Tricaine (MS-222) nacarai tesque 14805-24
Trisodium Citrate Dihydrate Wako 191-01785
Triton X-100 Wako 04605-250

Riferimenti

  1. Becker, T., Wullimann, M. F., Becker, C. G., Bernhardt, R. R., Schachner, M. Axonal regrowth after spinal cord transection in adult zebrafish. Journal of Comparative Neurology. 377 (4), 577-595 (1997).
  2. Raymond, P. A., Barthel, L. K., Bernardos, R. L., Perkowski, J. J. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Developmental Biology. 6, 36 (2006).
  3. März, M., Schmidt, R., Rastegar, S., Strähle, U. Regenerative response following stab injury in the adult zebrafish telencephalon. Developmental Dynamics. 240 (9), 2221-2231 (2011).
  4. Kang, J., et al. Modulation of tissue repair by regeneration enhancer elements. Nature. 532 (7598), 201-206 (2016).
  5. Simões, F. C., et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications. 11 (1), 600 (2020).
  6. Hoang, T., et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science. 370 (6519), (2020).
  7. Alunni, A., Bally-Cuif, L. A comparative view of regenerative neurogenesis in vertebrates. Development. 143 (5), 741-753 (2016).
  8. Diotel, N., Lübke, L., Strähle, U., Rastegar, S. Common and distinct features of adult neurogenesis and regeneration in the telencephalon of zebrafish and mammals. Frontiers in Neuroscience. 14, 568930 (2020).
  9. Labusch, M., Mancini, L., Morizet, D., Bally-Cuif, L. Conserved and divergent features of adult neurogenesis in zebrafish. Frontiers in Cell and Developmental Biology. 8, 525 (2020).
  10. Ito, K., et al. Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Developmental Dynamics. 243 (9), 1106-1115 (2014).
  11. Lai, S. L., et al. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. eLife. 6, 25605 (2017).
  12. Lust, K., Wittbrodt, J. Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina. eLife. 7, 32319 (2018).
  13. Shimizu, Y., Kawasaki, T. Differential regenerative capacity of the optic tectum of adult medaka and zebrafish. Frontiers in Cell and Developmental Biology. 9, 686755 (2021).
  14. Adolf, B., et al. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Biologia dello sviluppo. 295 (1), 278-293 (2006).
  15. Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., Brand, M. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Biologia dello sviluppo. 295 (1), 263-277 (2006).
  16. Alunni, A., et al. Evidence for neural stem cells in the medaka optic tectum proliferation zones. Developmental Neurobiology. 70 (10), 693-713 (2010).
  17. Kuroyanagi, Y., et al. Proliferation zones in adult medaka (Oryzias latipes) brain. Brain Research. 1323, 33-40 (2010).
  18. Ito, Y., Tanaka, H., Okamoto, H., Ohshima, T. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Biologia dello sviluppo. 342 (1), 26-38 (2010).
  19. Shimizu, Y., Ueda, Y., Ohshima, T. Wnt signaling regulates proliferation and differentiation of radial glia in regenerative processes after stab injury in the optic tectum of adult zebrafish. Glia. 66 (7), 1382-1394 (2018).
  20. Ueda, Y., Shimizu, Y., Shimizu, N., Ishitani, T., Ohshima, T. Involvement of sonic hedgehog and notch signaling in regenerative neurogenesis in adult zebrafish optic tectum after stab injury. Journal of Comparative Neurology. 526 (15), 2360-2372 (2018).
  21. Kiyooka, M., Shimizu, Y., Ohshima, T. Histone deacetylase inhibition promotes regenerative neurogenesis after stab wound injury in the adult zebrafish optic tectum. Biochemical and Biophysical Research Communications. 529 (2), 366-371 (2020).
  22. Shimizu, Y., Kawasaki, T. Histone acetyltransferase EP300 regulates the proliferation and differentiation of neural stem cells during adult neurogenesis and regenerative neurogenesis in the zebrafish optic tectum. Neuroscience Letters. 756, 135978 (2021).
  23. Shimizu, Y., Kiyooka, M., Ohshima, T. Transcriptome analyses reveal IL6/Stat3 signaling involvement in radial glia proliferation after stab wound injury in the adult zebrafish optic tectum. Frontiers in Cell and Developmental Biology. 9, 668408 (2021).
  24. Lindsey, B. W., et al. Midbrain tectal stem cells display diverse regenerative capacities in zebrafish. Scientific Reports. 9 (1), 4420 (2019).
  25. Yu, S., He, J. Stochastic cell-cycle entry and cell-state-dependent fate outputs of injury-reactivated tectal radial glia in zebrafish. eLife. 8, 48660 (2019).
  26. Bisese, E. C., et al. The acute transcriptome response of the midbrain/diencephalon to injury in the adult mummichog (Fundulus heteroclitus). Molecular Brain. 12 (1), 119 (2019).
  27. Schmidt, R., Beil, T., Strähle, U., Rastegar, S. Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration. Journal of Visualized Experiments. (4), e51753 (2014).
  28. Westerfield, M. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio) 5th ed. , (2007).
  29. Kaslin, J., Kroehne, V., Ganz, J., Hans, S., Brand, M. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration. Development. 144 (8), 1462-1471 (2017).
  30. Curado, S., et al. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Developmental Dynamics. 236 (4), 1025-1035 (2007).
  31. Shimizu, Y., Ito, Y., Tanaka, H., Ohshima, T. Radial glial cell-specific ablation in the adult zebrafish brain. Genesis. 53 (7), 431-439 (2015).
  32. Godoy, R., et al. Dopaminergic neurons regenerate following chemogenetic ablation in the olfactory bulb of adult zebrafish (Danio rerio). Scientific Reports. 10 (1), 12825 (2020).
  33. Sawahata, M., Izumi, Y., Akaike, A., Kume, T. In vivo brain ischemia-reperfusion model induced by hypoxia-reoxygenation using zebrafish larvae. Brain Research Bulletin. 173, 45-52 (2021).

Play Video

Citazione di questo articolo
Shimizu, Y., Kawasaki, T. Stab Wound Injury Model of the Adult Optic Tectum Using Zebrafish and Medaka for the Comparative Analysis of Regenerative Capacity. J. Vis. Exp. (180), e63166, doi:10.3791/63166 (2022).

View Video