Summary

小鼠输卵管的显微解剖和解离:个体片段鉴定和单细胞分离

Published: November 04, 2021
doi:

Summary

本文提出了一种小鼠输卵管显微解剖方法,该方法允许在保持RNA完整性的同时收集单个片段。此外,描述了非酶促卵管细胞解离过程。这些方法适用于功能不同的输卵管节段和解离的输卵管细胞的后续基因和蛋白质分析。

Abstract

小鼠模型系统在疾病过程分析方面是无与伦比的,因为它们具有遗传可操纵性和实验性治疗的低成本。然而,由于它们的体型小,一些结构,如直径为200-400μm的输卵管,已被证明相对难以研究,除非通过免疫组织化学。最近,免疫组织化学研究揭示了输卵管段比以前认识到的更复杂的差异;因此,输卵管被分为四个功能段,具有七种不同上皮细胞类型的不同比例。上皮细胞类型的不同胚胎起源和比例可能使这四个功能区域对疾病有不同的易感性。例如,浆液性上皮内癌的前体病变来自小鼠模型中的内底和人类输卵管中的相应腓肠区域。这里描述的方案详细介绍了一种显微解剖方法,以产生下游分析所需的足够量和纯度的RNA,例如逆转录定量PCR(RT-qPCR)和RNA测序(RNAseq)。还描述了一种大部分非酶解组织解离方法,适用于流式细胞术或单细胞RNAseq分析的完全分化的输卵管细胞。所描述的方法将促进在生殖,生育,癌症和免疫学领域利用小鼠输卵管的进一步研究。

Introduction

小鼠输卵管在功能和形态上与人类输卵管相似1。两者都由假分层的纤毛上皮组成,由两个历史上描述的上皮常驻细胞组成:纤毛细胞和分泌细胞12。输卵管有三个经典公认的部分:腹腔,壶腹和峡部。在最近的一项研究中,Harwalkar等人3 研究了输卵管形态和基因表达,导致将常驻上皮细胞的分类扩展到七个不同的群体。此外,他们建立了壶腹 – 地峡连接处作为输卵管3的独特部分。本文描述的方法侧重于腹足、壶腹和峡部,可以很容易地扩展到包括壶腹-峡部交界处23。腹股沟区域包含输卵管的开口,包括腓肠区域以及近端茎。向子宫移动,接下来是壶腹,然后是峡部。纤毛细胞在该区域的远端、卵巢近端或足底最为突出,而分泌细胞在近端或峡部最为突出1。与人类输卵管不同,小鼠输卵管是由腹膜宽韧带的延伸中脉支撑的盘绕结构14。此外,小鼠输卵管被包裹在滑囊中,这增加了卵母细胞转移到输卵管中的可能性4。壶腹被确定为受精的位置,发育中的胚胎在进入子宫之前从该位置进入地峡5。输卵管节段直径为200-400μm,较长的壶腹和峡部区域的长度约为0.5-1.0厘米4。输卵管在发情周期期间膨胀,腹扩和腹股沟比峡更易扩张1

细胞(尤其是分泌细胞)的过度增殖是盆腔中发现的浆液性肿瘤的前体病变的特征6。这些前体浆液性上皮内病变仅在腓骨区域出现在输卵管上皮中;目前尚不清楚为什么病变形成仅限于该区域,其中通常主要细胞类型是纤毛的,而不是分泌的278。正常生理功能的区域性以及对卵巢癌输卵管起源的兴趣增加910,111213,强调了单独评估输卵管段的重要性。

这里描述的方法详细介绍了单独输卵管片段的收集,用于随后对片段特异性基因表达和解离细胞的功能进行下游分析。传统上,许多组织按照苯酚:氯仿法或柱上完全提取法进行全RNA提取;然而,我们发现RNA质量得以维持,同时使用所述的组合方法产生了足够的产量。利用这种方法,可以处理输卵管的非常小的功能段以进行下游分析,而不是将输卵管作为一个整体进行研究,这可以掩盖代表不同段的结果14

分离的小鼠输卵管细胞很少通过流式细胞术进行研究,很可能是由于该组织的细胞产量有限。克服这个问题的一种方法是解离细胞,在培养物中培养它们,然后在 体外 刺激再分化,以获得适当的细胞数用于下游细胞分析15161718。这种方法的局限性是培养物中 离体 时间和微环境的改变,这两者都可能改变基因表达。还有一种假设是,形态学上的再分化具有与完整动物相同的转录和蛋白质组学特征。目前的解离方法旨在实现异质性输卵细胞群中最高数量的上皮细胞,同时保持单细胞分化。此外,大多数非酶的方法可能会限制细胞表面蛋白的损失。

Protocol

所有动物处理和程序均由加州大学河滨分校机构动物护理和使用委员会批准,并符合美国实验动物护理协会,美国农业部和美国国立卫生研究院的指南。所述方法利用C57BL/6成年雌性小鼠。所有动物在组织收获前都通过斩首实施了安乐死。 注:该方案的概述,使用蓝色染料来帮助有效解剖和解开输卵管,如第一图所示(图1)。 <p class="jove_content" fo:keep…

Representative Results

所描述的解离方案每只小鼠产生100,000-120,000个细胞,两个输卵管池化。该方法足够温和,可以保持多纤毛细胞边界完整,从而可以区分多纤毛细胞和分泌细胞,并验证消化方法是否足够温和以防止去分化。图5中的代表性免疫荧光图像显示了步骤4.2.1之后的小细胞团块,在4%多聚甲醛(PFA)/ DPBS中固定3分钟,用1%牛血清白蛋白(BSA)/Tris缓冲盐水补间(BTBST)洗涤并在悬浮液…

Discussion

输卵管的三个节段在组织学上,形态学上和功能上是不同的123。上皮从输卵管的一端到另一端变化很大。纤毛细胞在腓肠/腹肌末端占主导地位,而分泌细胞在峡部区域占主导地位1。虽然这种总体梯度已经被认识到了一段时间,但最近的工作已经发现了输卵管节段之间的更多区别。因此,虽然纤毛细胞在?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国防部对AMW突破奖(BCRP W81XWH-14-1-0425)的部分支持。KCR部分得到了校内奖学金的支持:Pease癌症博士预科奖学金和Mary Galvin Burden生物医学科学博士前奖学金以及加州大学河滨分校,校内奖:研究生理事会奖学金委员会论文研究补助金和研究生部论文年度计划奖。作者感谢Gillian M. Wright和Alyssa M. Kumari在这种方法的早期故障排除方面的帮助。

Materials

0.5 mm Stainless steel bead mix Next Advance SSB05 Mix 1:1 with 1.4 mm SSB14B, sterilized
1.4 mm Stainless steel bead mix Next Advance SSB14B Mix 1:1 with 0.5 mm SSB05, sterilized
1X Dulbecco's Phosphate Buffered Saline A, pH 7.4 (DPBS) Gibco 21600-010 Cold, sterile
25G needle BD 305122
60 mm sterile petri dishes Corning 430166
70 μm cell meshes Fisherbrand 22-636-548
Agilent Eukaryote Total RNA 6000 Pico Chip kit Agilent 2100 Bioanalyzer 5067-1513
Bead Bullet Blender Tissue Homogenizer Next Advance BBY24M
Bioanlyzer Agilent 2100 Bioanalyzer
Bovine serum albumin Sigma Aldrich A7906
Cold plate/pack/surface of choice N/A N/A Kept at -20C for dissection
Dental wax Polysciences Inc. 403
Dulbecco’s Modified Eagle’s Medium (DMEM)/ Ham’s F12 Corning 10-090-CV Prepare dissection medium: DMEM/ Ham’s F12, 10% FBS, 25 mM Hepes, 1% Pen-Strep
Fetal Bovine Serum Corning 35-015CV
Fine point forceps of choice N/A N/A
Glycine Sigma Aldrich G712b Immunocytochemical validation images
Goat anti-mouse IgG Alexa Fluor 555 Invitrogen A-21422 Immunocytochemical validation images
Goat anti-rabbit IgG Alexa Fluor 488 Invitrogen A-11001 Immunocytochemical validation images
Hepes Sigma Aldrich H-3784
Hoescht 33342 Cell Signaling Technologies 4082S Immunocytochemical validation images
Inverted compound microscope Keyence BZ-X700
Mouse anti-mouse Occludin Invitrogen 33-1500 Immunocytochemical validation images
Non-enzymatic dissociation buffer N/A 5 mM EDTA, 1 g/L glucose, 0.4% BSA, 1X DPBS
Nylon macro-mesh 1 mm x 1 mm Thomas Scientific 1210U04
Paraformaldehyde Sigma Aldrich P-6148 Immunocytochemical validation images
Pen-Strep MP Biomedicals 10220-718
Prolong Gold Antifade Reagent Cell Signaling Technologies 9071S Immunocytochemical validation images: antifade mounting medium
Pronase Sigma Aldrich 10165921001 Prepare pronase digestion medium: 0.15% Pronase in DMEM/Ham's F12, sterile
Propidium Iodide Roche 11 348 639 001 Viability validation images
Rabbit anti-mouse Acetylated-Tubulin Abcam ab179484 Immunocytochemical validation images
RBC lysis buffer BD Biosciences 555899
RNeasy Mini Kit Qiagen 74134 Utilized for on-column purification in text.
Spring form microdissection scissors Roboz Surgical RS-5610
Sterile 3 mL bulb pipettors Globe Scientific 137135
Toluidine blue Alfa Aesar J66015 Prepare toluidine blue solution: 1% in 1X DPBS, sterile
Tris-Buffered Saline-Tween (TBST) N/A N/A Immunocytochemical validation images; 0.1 N NaCl, 10 mM Tris-Cl pH 7.5, 1% Tween 20
Triton-X-100 Mallinckrodt Inc. 3555 Immunocytochemical validation images
Trizol RNA Extraction Reagent Invitrogen 15596026 Referred to as RNA extraction reagent. Nucelase-free water, chloroform and isoproponal are required in supplement of performing Trizol extraction per manufacturer's guidelines

Riferimenti

  1. Stewart, C. A., et al., Kubiak, J. Z., et al. . Mouse oviduct developmemt in Mouse Development: From Oocyte to Stem Cells. , 247-262 (2012).
  2. Ford, M. J., et al. Oviduct epithelial cells constitute two developmentally distinct lineages that are spatially separated along the distal-proximal axis. Cell Reports. 36 (10), 109677 (2021).
  3. Harwalkar, K., et al. Anatomical and cellular heterogeneity in the mouse oviduct-its potential roles in reproduction and preimplantation development. Biology of Reproduction. 104 (6), 1249-1261 (2021).
  4. Agduhr, E. Studies on the structure and development of the bursa ovarica and the tuba uterina in the mouse. Acta Zoologica. 8 (1), 1 (1927).
  5. Pulkkinen, M. O. Oviductal function is critical for very early human life. Annals of Medicine. 27 (3), 307-310 (1995).
  6. Kindelberger, D. W., et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. American Journal of Surgical Pathology. 31 (2), 161-169 (2007).
  7. Ghosh, A., Syed, S. M., Tanwar, P. S. In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells. Development. 144 (17), 3031-3041 (2017).
  8. Lee, Y., et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. Journal of Pathology. 211 (1), 26-35 (2007).
  9. Kim, J., et al. High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proceedings of the National Academy of Sciences of the United States of America. 109 (10), 3921-3926 (2012).
  10. Perets, R., et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 24 (6), 751-765 (2013).
  11. Sherman-Baust, C. A., et al. A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high-grade serous carcinoma development. Journal of Pathology. 233 (3), 228-237 (2014).
  12. Zhai, Y. L., et al. High-grade serous carcinomas arise in the mouse oviduct via defects linked to the human disease. Journal of Pathology. 243 (1), 16-25 (2017).
  13. Karthikeyan, S., et al. Prolactin signaling drives tumorigenesis in human high grade serous ovarian cancer cells and in a spontaneous fallopian tube derived model. Cancer Letters. 433, 221-231 (2018).
  14. Shao, R., et al. Differences in prolactin receptor (PRLR) in mouse and human fallopian tubes: Evidence for multiple regulatory mechanisms controlling PRLR isoform expression in mice. Biology of Reproduction. 79 (4), 748-757 (2008).
  15. Alwosaibai, K., et al. PAX2 maintains the differentiation of mouse oviductal epithelium and inhibits the transition to a stem cell-like state. Oncotarget. 8 (44), 76881-76897 (2017).
  16. Peri, L. E., et al. A novel class of interstitial cells in the mouse and monkey female reproductive tracts. Biology of Reproduction. 92 (4), 102 (2015).
  17. Lõhmussaar, K., et al. Assessing the origin of high-grade serous ovarian cancer using CRISPR-modification of mouse organoids. Nature Communications. 11 (1), 2660 (2020).
  18. Chen, S., et al. An air-liquid interphase approach for modeling the early embryo-maternal contact zone. Scientific Reports. 7, 42298 (2017).
  19. Desjardins, P., Conklin, D. NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments: JoVE. (45), e2565 (2010).
  20. Schroeder, A., et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biology. 7, 3 (2006).
  21. McGlade, E. A., et al. Cell-type specific analysis of physiological action of estrogen in mouse oviducts. The FASEB Journal. 35 (5), 21563 (2021).
check_url/it/63168?article_type=t

Play Video

Citazione di questo articolo
Radecki, K. C., Lorenson, M. Y., Carter, D. G., Walker, A. M. Microdissection and Dissociation of the Murine Oviduct: Individual Segment Identification and Single Cell Isolation. J. Vis. Exp. (177), e63168, doi:10.3791/63168 (2021).

View Video