Summary

Exploring the Arginine Methylome by Nuclear Magnetic Resonance Spectroscopy

Published: December 16, 2021
doi:

Summary

The present protocol describes the preparation and quantitative measurement of free and protein-bound arginine and methyl-arginines by 1H-NMR spectroscopy.

Abstract

Protein-bound arginine is commonly methylated in many proteins and regulates their function by altering the physicochemical properties, their interaction with other molecules, including other proteins or nucleic acids. This work presents an easily implementable protocol for quantifying arginine and its derivatives, including asymmetric and symmetric dimethylarginine (ADMA and SDMA, respectively) and monomethyl arginine (MMA). Following protein isolation from biological body fluids, tissues, or cell lysates, a simple method for homogenization, precipitation of proteins, and protein hydrolysis is described. Since the hydrolysates contain many other components, such as other amino acids, lipids, and nucleic acids, a purification step using solid-phase extraction (SPE) is essential. SPE can either be performed manually using centrifuges or a pipetting robot. The sensitivity for ADMA using the current protocol is about 100 nmol/L. The upper limit of detection for arginine is 3 mmol/L due to SPE saturation. In summary, this protocol describes a robust method, which spans from biological sample preparation to NMR-based detection, providing valuable hints and pitfalls for successful work when studying the arginine methylome.

Introduction

During the last two decades, methylation of arginine residues has been recognized as an essential posttranslational modification of proteins. It affects fundamental biological processes like regulation of transcription, signal transduction, and many more1. The main proteins involved in the regulation of arginine methylation are protein arginine methyltransferases (PRMTs)2. The main derivatives of arginine are ω-(NG,NG)-asymmetric dimethylarginine (ADMA), ω-(NG,N'G)-symmetric dimethylarginine (SDMA), and ω-NG-monomethylarginine (MMA)2.

PRMTs use S-adenosyl-l-methionine to transfer methyl groups to the terminal guanidino group (with two equivalent amino groups) of protein-bound arginine1. Two main enzymes can be distinguished: Both type I and type II enzymes catalyze the first methylation step to form MMA (which thereby loses its symmetry). Following this step, type I enzymes (e.g., PRMT1, 2, 3, 4, 6, 8) use MMA as the substrate to form ADMA, whereas type II enzymes (primarily PRMT5 and PRMT9) produce SDMA. PRMT1 was the first protein arginine methyltransferase to be isolated from mammalian cells3. Still, PRMTs have been evolutionarily conserved4 in other animals like non-mammalian vertebrates, invertebrate chordates, echinoderms, arthropods, and nematodes cnidarians5, plants6, and protozoa, including fungi like yeast7. In many cases, knockout of one of the PRMTs leads to loss of viability, revealing the essential role of methylated arginine species involved in fundamental cellular processes like transcription, translation, signal transduction, apoptosis, and liquid-liquid phase separation (meaning the formation of membrane-less organelles, e.g., nucleoli), which regularly involves arginine-rich domains8,9,10. In turn, this influences physiology and disease states, including cancer11,12,13, multiple myeloma14, cardiovascular diseases15, viral pathogenesis, spinal muscular atrophy16, diabetes mellitus17, and aging1. Increased ADMA levels in the bloodstream, e.g., derived from lung18 due to protein breakdown, are thought to be connected with endothelial dysfunction, chronic pulmonary disease19, and other syndromes of cardiovascular disease20. Overexpression of PRMTs has been found to accelerate tumorigenesis and is associated with poor prognosis21,22. Besides, ablation of PRMT6 and PRMT7 triggers a cellular senescence phenotype23. Significant decreased ADMA and PRMT1 have been found during the aging of WI-38 fibroblasts24.

The challenge is understanding how methylation acts in (patho)physiological processes is identifying and quantifying protein arginine methylation. Most of the current approaches use antibodies to detect methylated arginines. However, these antibodies are still context-specific and might fail to recognize different motifs of arginine methylated proteins25,26. In the described protocol, all of the arginine derivatives mentioned afore can be quantified reliably by nuclear magnetic resonance (NMR) spectroscopy, i.e., alone, in combination, or, as in most cases, within complex biological matrices like eukaryotic cells (e.g., from yeast, mouse, or human origin) and tissues27, as well as serum28. For proteins and those complex matrices, protein hydrolysis29 is a prerequisite to generate free (modified) amino acids, such as arginine, MMA, SDMA, and ADMA. Solid-phase extraction (SPE)30 enables the enrichment of the compounds of interest. Finally, 1H-NMR spectroscopy allows the parallel detection of arginine and all the major methyl derivatives of arginine. NMR spectroscopy comes with the advantage that it is genuinely quantitative, highly reproducible, and a robust technique31,32. The final NMR measurements can be done afterward when many samples have been collected and prepared. Finally, this protocol mainly focuses on sample preparation as this does not require an own NMR spectrometer. It can be performed in most biochemical laboratories. Still, some hints on which NMR spectroscopy measurements should be done are provided in this work.

Protocol

Yeast protein hydrolysates were used as samples for the Representative results of this work. The entire protocol is summarized in Figure 1. 1. Preparation of materials and reagents Methanol/water: prepare a mixture of two parts of 99% methanol (MeOH) and one part of H2O, designated as MeOH/H2O. Store pure MeOH and MeOH/H2O at -20 °C to minimize alcohol evaporation and increase sample stability.</li…

Representative Results

Routinely, 1H 1D projections of 2D J-resolved (JRES), virtually decoupled NMR spectra are used for peak assignments and quantifications in our laboratory36. Figure 3 shows representative JRES spectra of yeast protein hydrolysates purified using the present SPE protocol. Though at very different concentrations, both substances can be separated and quantified in a cellular matrix. Based on the number of protons of the specific methyl (-CH3) or meth…

Discussion

In the following section, the primary focus lies on the method itself; the biological implications of arginine methylation are described in the Introduction section.

Firstly, tissues of different stiffness might need adjustment of sample lysis: cells from cell culture (including bacteria, yeast, etc.) and tissues like brain, young liver, smooth muscle, etc., can quickly be homogenized. For tissues of high stiffness (including liver of elderly subjects, arteries, bones, etc.), the homogenizatio…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The work was supported by Austrian Science Fund (FWF) grants P28854, I3792, doc.funds BioMolStruct DOC 130, DK-MCD W1226 BioTechMed-Graz (Flagship project DYNIMO), Austrian Research Promotion Agency (FFG) grants 864690 and 870454, the Integrative Metabolism Research Center Graz; Austrian Infrastructure Program 2016/2017, the Styrian Government (Zukunftsfonds) and Startup Fund for High-level Talents of Fujian Medical University (XRCZX2021020). We thank the Center of Medical Research for access to cell culture facilities. F.Z. was trained within the frame of the PhD program Molecular Medicine, Medical University of Graz. Q.Z. was trained within the frame of the PhD program Metabolic and Cardiovascular Diseases, Medical University of Graz.

Materials

15 mL tubes Greiner Bio One 188271
3-(trimethylsilyl) propionic acid-2,2,3,3-d4 sodium salt (TSP) Alfa Aesar A1448
5 mL tubes, round bottom Greiner Bio One 115101
Ammonia Solution 32% Roth A990.1
Bruker 600 MHz NMR spectrometer, equipped with a TXI probe head Bruker
Centrifuge, refrigerated, e.g. 5430 R Eppendorf 5428000010
Chloroform ≥99% p.a. Roth 3313.1
Cryocool Thermo Scientific SCC1 heat transfer fluid for SpeedVac System
Deuterium Oxide (D2O) Cambridge Isotope Laboratories DLM-10-PK
Dimethyl sulfoxide-d6 (d6-DMSO) Cambridge Isotope Laboratories DLM-6-1000
Drying Chamber Binder 9090-0018
DURAN culture tubes, 13 x 100mm, GL 14, 9 mL VWR International 212-0375
Edwards Deep vacuum oil pump RV5 Thermo Scientific 16234611 part of the SpeedVac System
Eppendorf 1.5 mL tubes Greiner Bio One 616201
Gilson pipetting robot GX-241 Aspec Gilson Inc. 26150008
L-arginine AppliChem A3675
Methanol ≥99% Roth 8388.4
Milli-Q water aparatus Millipore ZIQ7000T0
Oasis MCX 1cc/30 mg, 1 mL cartridges Waters 186000252 https://www.waters.com/waters/en_US/Waters-Oasis-Sample-Extraction-SPE-Products/
Phosphate Buffered Saline (PBS) Lonza LONBE17-512F
Precellys 24 tissue homogenizer Bertin Instruments P000669-PR240-A https://www.bertin-instruments.com/product/sample-preparation-homogenizers/precellys24-tissue-homogenizer/
Precellys tubes (pulping tubes) VWR International 432-0351
Precellyse 1.4 mm zirconium oxide beads VWR International 432-0356
Reacti-Therm/ReactiVap Heating, Stirring, and Evaporation Modules Thermo Scientific TS-18820 https://www.thermofisher.com/order/catalog/product/TS-18820
Rotor for 1.5 mL tubes, FA-45-30-11 Eppendorf 5427753001
Savant Refrigerated Cooling Trap Thermo Scientific 15996161 part of the SpeedVac System
Savant SpeedVac vacuum concentrator SPD210 Thermo Scientific 15906181 part of the SpeedVac System; equipped with rotor for 1.5 ml tubes
Screw caps for glas vials with PTFE sealing, DN9 Dr. R. Forche Chromatographie CT11B3011
Seasand Roth 8441.3
Short thread glas vials 1.5 mL, ND9 Dr. R. Forche Chromatographie VT1100309
Sodium azide (NaN3) Roth K305.1
Sodium hydroxide (NaOH) VWR BDH7363-4
Sodium phosphate dibasic (Na2HPO4) VWR 80731-078
TopSpin 4.0 (Software) Bruker https://www.bruker.com
ω-NG-asymmetric dimethylarginine (ADMA) Santa Cruz Biotechnology sc-208093
ω-NG-monomethylarginine (MMA) Santa Cruz Biotechnology sc-200739A
ω-NG-NG'-symmetric dimethylarginine (SDMA) Santa Cruz Biotechnology sc-202235A

Riferimenti

  1. Guccione, E., Richard, S. The regulation, functions and clinical relevance of arginine methylation. Nature Reviews Molecular Cell Biology. 20 (10), 642-657 (2019).
  2. Bedford, M. T., Clarke, S. G. Protein arginine methylation in mammals: who, what, and why. Molecular Cell. 33 (1), 1-13 (2009).
  3. Lin, W. J., Gary, J. D., Yang, M. C., Clarke, S., Herschman, H. R. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. Journal of Biological Chemistry. 271 (25), 15034-15044 (1996).
  4. Bachand, F. Protein arginine methyltransferases: from unicellular eukaryotes to humans. Eukaryotic Cell. 6 (6), 889-898 (2007).
  5. Wang, Y. C., Li, C. Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems. FEBS Journal. 279 (6), 932-945 (2012).
  6. Ahmad, A., Cao, X. Plant PRMTs broaden the scope of arginine methylation. Journal of Genetics and Genomics. 39 (5), 195-208 (2012).
  7. Fisk, J. C., Read, L. K. Protein arginine methylation in parasitic protozoa. Eukaryotic Cell. 10 (8), 1013-1022 (2011).
  8. Hofweber, M., et al. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell. 173 (3), 706-719 (2018).
  9. Chong, P. A., Vernon, R. M., Forman-Kay, J. D. RGG/RG Motif Regions in RNA Binding and Phase Separation. Journal of Molecular Biology. 430 (23), 4650-4665 (2018).
  10. Nott, T. J., et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Molecular Cell. 57 (5), 936-947 (2015).
  11. Fong, J. Y., et al. Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell. 36 (2), 194-209 (2019).
  12. Yang, Y., Bedford, M. T. Protein arginine methyltransferases and cancer. Nature Reviews Cancer. 13 (1), 37-50 (2013).
  13. Wang, S. M., Dowhan, D. H., Muscat, G. E. O. Epigenetic arginine methylation in breast cancer: emerging therapeutic strategies. Journal of Molecular Endocrinology. 62 (3), 223-237 (2019).
  14. Gulla, A., et al. Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma. Leukemia. 32 (4), 996-1002 (2018).
  15. Wang, Z., Tang, W. H., Cho, L., Brennan, D. M., Hazen, S. L. Targeted metabolomic evaluation of arginine methylation and cardiovascular risks: potential mechanisms beyond nitric oxide synthase inhibition. Arteriosclerosis, Thrombosis, and Vascular Biology. 29 (9), 1383-1391 (2009).
  16. Friesen, W. J., Massenet, S., Paushkin, S., Wyce, A., Dreyfuss, G. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Molecular Cell. 7 (5), 1111-1117 (2001).
  17. Lee, J. H., Park, G. H., Lee, Y. K., Park, J. H. Changes in the arginine methylation of organ proteins during the development of diabetes mellitus. Diabetes Research and Clinical Practice. 94 (1), 111-118 (2011).
  18. Bulau, P., et al. Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA. American Journal of Physiology: Lung Cellular and Molecular Physiology. 292 (1), 18-24 (2007).
  19. Zakrzewicz, D., Eickelberg, O. From arginine methylation to ADMA: a novel mechanism with therapeutic potential in chronic lung diseases. BMC Pulmonary Medicine. 9, 5 (2009).
  20. Fulton, M. D., Brown, T., Zheng, Y. G. The biological axis of protein arginine methylation and asymmetric dimethylarginine. International Journal of Molecular Sciences. 20 (13), (2019).
  21. Aliferis, K. A., Chrysayi-Tokousbalides, M. Metabolomics in pesticide research and development: review and future perspectives. Metabolomics. 7 (1), 35-53 (2011).
  22. Chiang, K., et al. PRMT5 Is a Critical Regulator of Breast Cancer Stem Cell Function via Histone Methylation and FOXP1 Expression. Cell Reports. 21 (12), 3498-3513 (2017).
  23. Blanc, R. S., Vogel, G., Chen, T., Crist, C., Richard, S. PRMT7 preserves satellite cell regenerative capacity. Cell Reports. 14 (6), 1528-1539 (2016).
  24. Lim, Y., Lee, E., Lee, J., Oh, S., Kim, S. Down-regulation of asymmetric arginine methylation during replicative and H2O2-induced premature senescence in WI-38 human diploid fibroblasts. Journal of Biochemistry. 144 (4), 523-529 (2008).
  25. Bhatter, N., et al. Arginine methylation augments Sbp1 function in translation repression and decapping. FEBS Journal. 286 (23), 4693-4708 (2019).
  26. Lee, Y. H., Stallcup, M. R. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Molecular Endocrinology. 23 (4), 425-433 (2009).
  27. Zhang, F., et al. Global analysis of protein arginine methylation. Cell Reports Methods. 1 (2), (2021).
  28. Zinellu, A., Sotgia, S., Scanu, B., Deiana, L., Carru, C. Determination of protein-incorporated methylated arginine reference values in healthy subjects whole blood and evaluation of factors affecting protein methylation. Clinical Biochemistry. 41 (14-15), 1218-1223 (2008).
  29. Weiss, M., Manneberg, M., Juranville, J. F., Lahm, H. W., Fountoulakis, M. Effect of the hydrolysis method on the determination of the amino acid composition of proteins. Journal of Chromatography A. 795 (2), 263-275 (1998).
  30. Davids, M., et al. Simultaneous determination of asymmetric and symmetric dimethylarginine, L-monomethylarginine, L-arginine, and L-homoarginine in biological samples using stable isotope dilution liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 900, 38-47 (2012).
  31. Stryeck, S., Birner-Gruenberger, R., Madl, T. Integrative metabolomics as emerging tool to study autophagy regulation. Microbial Cell. 4 (8), 240-258 (2017).
  32. Vignoli, A., et al. High-throughput metabolomics by 1D NMR. Angewandte Chemie International Edition. 58 (4), 968-994 (2019).
  33. Carr, H. Y., Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physical Review. 94 (3), 630-638 (1954).
  34. Meiboom, S., Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Review of Scientific Instruments. 29 (8), 688-691 (1958).
  35. Nagayama, K., Wuthrich, K., Bachmann, P., Ernst, R. R. Two-dimensional J-resolved 1H n.m.r. spectroscopy for studies of biological macromolecules. Biochemical and Biophysical Research Communications. 78 (1), 99-105 (1977).
  36. Stryeck, S., et al. Serum concentrations of Citrate, Tyrosine, 2- and 3- Hydroxybutyrate are associated with increased 3-month mortality in acute heart failure patients. Scientific Reports. 9 (1), 6743 (2019).
  37. Zhang, F., et al. Tissue-specific landscape of metabolic dysregulation during ageing. Biomolecules. 11 (2), (2021).
  38. Zhang, F., et al. Growing human hepatocellular tumors undergo a global metabolic reprogramming. Cancers. 13 (8), (2021).
  39. Pahlich, S., Zakaryan, R. P., Gehring, H. Protein arginine methylation: Cellular functions and methods of analysis. Biochimica et Biophysica Acta. 1764 (12), 1890-1903 (2006).
  40. Habisch, H. J., et al. Neuroectodermally converted human mesenchymal stromal cells provide cytoprotective effects on neural stem cells and inhibit their glial differentiation. Cytotherapy. 12 (4), 491-504 (2010).
  41. Ibanez, G., McBean, J. L., Astudillo, Y. M., Luo, M. An enzyme-coupled ultrasensitive luminescence assay for protein methyltransferases. Analytical Biochemistry. 401 (2), 203-210 (2010).
  42. Hevel, J. M., Price, O. M. Rapid and direct measurement of methyltransferase activity in about 30min. Methods. 175, 3-9 (2020).
  43. Altincekic, N., et al. Site-specific detection of arginine methylation in highly repetitive protein motifs of low sequence complexity by NMR. Journal of the American Chemical Society. 142 (16), 7647-7654 (2020).
  44. Kaneb, H. M., Dion, P. A., Rouleau, G. A. The FUS about arginine methylation in ALS and FTLD. The EMBO Journal. 31 (22), 4249-4251 (2012).
check_url/it/63245?article_type=t

Play Video

Citazione di questo articolo
Habisch, H., Zhang, F., Zhou, Q., Madl, T. Exploring the Arginine Methylome by Nuclear Magnetic Resonance Spectroscopy. J. Vis. Exp. (178), e63245, doi:10.3791/63245 (2021).

View Video